|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.11.20.0011.02
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
D[LegendreQ[\[Nu], \[Mu], 2, z], {\[Nu], m}] ==
(Pi/2) Csc[\[Mu] Pi] (Cos[\[Mu] Pi] ((1 + z)^(\[Mu]/2)/(1 - z)^(\[Mu]/2))
Sum[(1/(Gamma[1 - \[Mu] + k] k!)) ((1 - z)/2)^k
Sum[Binomial[m, j] Sum[StirlingS1[k, i] Pochhammer[i - j + 1, j]
\[Nu]^(i - j) Sum[(-1)^r StirlingS1[k, r] Pochhammer[
r - m + j + 1, m - j] (\[Nu] + 1)^(r - m + j), {r, 1, k}],
{i, 1, k}], {j, 0, m}], {k, 0, Infinity}] -
D[Pochhammer[1 + \[Nu] - \[Mu], 2 \[Mu]], {\[Nu], m}]
LegendreP[\[Nu], -\[Mu], 2, z] - ((1 - z)^(\[Mu]/2)/(1 + z)^(\[Mu]/2))
Sum[Binomial[m, p] D[Pochhammer[1 + \[Nu] - \[Mu], 2 \[Mu]],
{\[Nu], m - p}] Sum[(1/(Gamma[1 + \[Mu] + k] k!)) ((1 - z)/2)^k
Sum[Binomial[p, j] Sum[StirlingS1[k, i] Pochhammer[i - j + 1, j]
\[Nu]^(i - j) Sum[(-1)^r StirlingS1[k, r] Pochhammer[
r - p + j + 1, p - j] (\[Nu] + 1)^(r - p + j), {r, 1, k}],
{i, 1, k}], {j, 0, p}], {k, 0, Infinity}], {p, 1, m}]) /;
Abs[(1 - z)/2] < 1 && !Element[\[Mu], Integers] && Element[m, Integers] &&
m >= 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["\[Nu]", ",", "m"]], "}"]]], RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "2", ",", "z"]], "]"]]]], "\[Equal]", RowBox[List[FractionBox["\[Pi]", "2"], " ", RowBox[List["Csc", "[", RowBox[List["\[Mu]", " ", "\[Pi]"]], "]"]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cos", "[", RowBox[List["\[Mu]", " ", "\[Pi]"]], "]"]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]], " "]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]], " "]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "k"]], "]"]], " ", RowBox[List["k", "!"]]]]], SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["1", "-", "z"]], "2"], ")"]], "k"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "m"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "j"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "1"]], "k"], RowBox[List[RowBox[List["StirlingS1", "[", RowBox[List["k", ",", "i"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["i", "-", "j", "+", "1"]], ",", "j"]], "]"]], " ", SuperscriptBox["\[Nu]", RowBox[List["i", "-", "j"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["r", "=", "1"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "r"], " ", RowBox[List["StirlingS1", "[", RowBox[List["k", ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["r", "-", "m", "+", "j", "+", "1"]], ",", RowBox[List["m", "-", "j"]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[Nu]", "+", "1"]], ")"]], RowBox[List["r", "-", "m", "+", "j"]]]]]]]]]]]]]]]]]]]]], "-", RowBox[List[RowBox[List["D", "[", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]", "-", "\[Mu]"]], ",", RowBox[List["2", " ", "\[Mu]"]]]], "]"]], ",", RowBox[List["{", RowBox[List["\[Nu]", ",", "m"]], "}"]]]], "]"]], RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", RowBox[List["-", "\[Mu]"]], ",", "2", ",", "z"]], "]"]]]], "-", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]], " "]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]], " "]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "1"]], "m"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "p"]], "]"]], RowBox[List["D", "[", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]", "-", "\[Mu]"]], ",", RowBox[List["2", "\[Mu]"]]]], "]"]], ",", RowBox[List["{", RowBox[List["\[Nu]", ",", RowBox[List["m", "-", "p"]]]], "}"]]]], "]"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Mu]", "+", "k"]], "]"]], " ", RowBox[List["k", "!"]]]]], SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["1", "-", "z"]], "2"], ")"]], "k"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "p"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["p", ",", "j"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "1"]], "k"], RowBox[List[RowBox[List["StirlingS1", "[", RowBox[List["k", ",", "i"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["i", "-", "j", "+", "1"]], ",", "j"]], "]"]], " ", SuperscriptBox["\[Nu]", RowBox[List["i", "-", "j"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["r", "=", "1"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "r"], " ", RowBox[List["StirlingS1", "[", RowBox[List["k", ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["r", "-", "p", "+", "j", "+", "1"]], ",", RowBox[List["p", "-", "j"]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[Nu]", "+", "1"]], ")"]], RowBox[List["r", "-", "p", "+", "j"]]]]]]]]]]]]]]]]]]]]]]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", FractionBox[RowBox[List["1", "-", "z"]], "2"], "]"]], "<", "1"]], "\[And]", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List["\[Mu]", ",", "Integers"]], "]"]], "]"]], "\[And]", RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[GreaterEqual]", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> ∂ </mo> <mi> m </mi> </msup> <mrow> <msubsup> <semantics> <mi> Q </mi> <annotation encoding='Mathematica'> TagBox["Q", LegendreQ] </annotation> </semantics> <mi> ν </mi> <mi> μ </mi> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox["z", HoldComplete[LegendreQ, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> ∂ </mo> <msup> <mi> ν </mi> <mi> m </mi> </msup> </mrow> </mfrac> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mi> csc </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> μ </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> μ </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> μ </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> μ </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mtext> </mtext> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> μ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> m </mi> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> j </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity, Rule[Editable, True]]], List[TagBox["j", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <msubsup> <semantics> <mi> S </mi> <annotation encoding='Mathematica'> TagBox["S", StirlingS1] </annotation> </semantics> <mi> k </mi> <mrow> <mo> ( </mo> <mi> i </mi> <mo> ) </mo> </mrow> </msubsup> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> i </mi> <mo> - </mo> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["i", "-", "j", "+", "1"]], ")"]], "j"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mi> ν </mi> <mrow> <mi> i </mi> <mo> - </mo> <mi> j </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> r </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> r </mi> </msup> <mo> ⁢ </mo> <msubsup> <semantics> <mi> S </mi> <annotation encoding='Mathematica'> TagBox["S", StirlingS1] </annotation> </semantics> <mi> k </mi> <mrow> <mo> ( </mo> <mi> r </mi> <mo> ) </mo> </mrow> </msubsup> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <mi> m </mi> <mo> + </mo> <mi> r </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> m </mi> <mo> - </mo> <mi> j </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["j", "-", "m", "+", "r", "+", "1"]], ")"]], RowBox[List["m", "-", "j"]]], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> - </mo> <mi> m </mi> <mo> + </mo> <mi> r </mi> </mrow> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <msup> <mo> ∂ </mo> <mi> m </mi> </msup> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> - </mo> <mi> μ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> μ </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["\[Nu]", "-", "\[Mu]", "+", "1"]], ")"]], RowBox[List["2", " ", "\[Mu]"]]], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mo> ∂ </mo> <msup> <mi> ν </mi> <mi> m </mi> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox["P", LegendreP] </annotation> </semantics> <mi> ν </mi> <mrow> <mo> - </mo> <mi> μ </mi> </mrow> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox["z", HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> μ </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> μ </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mtext> </mtext> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> p </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> m </mi> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> p </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity, Rule[Editable, True]]], List[TagBox["p", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <mfrac> <mrow> <msup> <mo> ∂ </mo> <mrow> <mi> m </mi> <mo> - </mo> <mi> p </mi> </mrow> </msup> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> - </mo> <mi> μ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> μ </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["\[Nu]", "-", "\[Mu]", "+", "1"]], ")"]], RowBox[List["2", " ", "\[Mu]"]]], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mo> ∂ </mo> <msup> <mi> ν </mi> <mrow> <mi> m </mi> <mo> - </mo> <mi> p </mi> </mrow> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mtext> </mtext> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> μ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> p </mi> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> p </mi> </mtd> </mtr> <mtr> <mtd> <mi> j </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["p", Identity, Rule[Editable, True]]], List[TagBox["j", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <msubsup> <semantics> <mi> S </mi> <annotation encoding='Mathematica'> TagBox["S", StirlingS1] </annotation> </semantics> <mi> k </mi> <mrow> <mo> ( </mo> <mi> i </mi> <mo> ) </mo> </mrow> </msubsup> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> i </mi> <mo> - </mo> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["i", "-", "j", "+", "1"]], ")"]], "j"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mi> ν </mi> <mrow> <mi> i </mi> <mo> - </mo> <mi> j </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> r </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> r </mi> </msup> <mo> ⁢ </mo> <msubsup> <semantics> <mi> S </mi> <annotation encoding='Mathematica'> TagBox["S", StirlingS1] </annotation> </semantics> <mi> k </mi> <mrow> <mo> ( </mo> <mi> r </mi> <mo> ) </mo> </mrow> </msubsup> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <mi> p </mi> <mo> + </mo> <mi> r </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> p </mi> <mo> - </mo> <mi> j </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["j", "-", "p", "+", "r", "+", "1"]], ")"]], RowBox[List["p", "-", "j"]]], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> - </mo> <mi> p </mi> <mo> + </mo> <mi> r </mi> </mrow> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> < </mo> <mn> 1 </mn> </mrow> <mo> ∧ </mo> <mrow> <mi> μ </mi> <mo> ∉ </mo> <mi> ℤ </mi> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> ν </ci> <degree> <ci> m </ci> </degree> </bvar> <apply> <ci> LegendreQ </ci> <ci> ν </ci> <ci> μ </ci> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <pi /> <apply> <csc /> <apply> <times /> <ci> μ </ci> <pi /> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <cos /> <apply> <times /> <ci> μ </ci> <pi /> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> z </ci> </apply> <apply> <times /> <ci> μ </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <ci> μ </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <factorial /> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> k </ci> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> m </ci> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <ci> m </ci> <ci> j </ci> </apply> <apply> <sum /> <bvar> <ci> i </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <times /> <apply> <ci> StirlingS1 </ci> <ci> k </ci> <ci> i </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> i </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <cn type='integer'> 1 </cn> </apply> <ci> j </ci> </apply> <apply> <power /> <ci> ν </ci> <apply> <plus /> <ci> i </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> r </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> r </ci> </apply> <apply> <ci> StirlingS1 </ci> <ci> k </ci> <ci> r </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <ci> r </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <partialdiff /> <bvar> <ci> ν </ci> <degree> <ci> m </ci> </degree> </bvar> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> ν </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> μ </ci> </apply> </apply> </apply> <apply> <ci> LegendreP </ci> <ci> ν </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <ci> μ </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> z </ci> </apply> <apply> <times /> <ci> μ </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> p </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> m </ci> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <ci> m </ci> <ci> p </ci> </apply> <apply> <partialdiff /> <bvar> <ci> ν </ci> <degree> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> </degree> </bvar> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> ν </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> μ </ci> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> k </ci> <ci> μ </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <factorial /> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> k </ci> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> p </ci> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <ci> p </ci> <ci> j </ci> </apply> <apply> <sum /> <bvar> <ci> i </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <times /> <apply> <ci> StirlingS1 </ci> <ci> k </ci> <ci> i </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> i </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <cn type='integer'> 1 </cn> </apply> <ci> j </ci> </apply> <apply> <power /> <ci> ν </ci> <apply> <plus /> <ci> i </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> r </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> r </ci> </apply> <apply> <ci> StirlingS1 </ci> <ci> k </ci> <ci> r </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <ci> r </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <lt /> <apply> <abs /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <notin /> <ci> μ </ci> <ci> ℤ </ci> </apply> <apply> <in /> <ci> m </ci> <ci> ℕ </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["\[Nu]_", ",", "m_"]], "}"]]]]], RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]_", ",", "\[Mu]_", ",", "2", ",", "z_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", "\[Pi]", " ", RowBox[List["Csc", "[", RowBox[List["\[Mu]", " ", "\[Pi]"]], "]"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["Cos", "[", RowBox[List["\[Mu]", " ", "\[Pi]"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["1", "-", "z"]], "2"], ")"]], "k"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "m"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "j"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "1"]], "k"], RowBox[List[RowBox[List["StirlingS1", "[", RowBox[List["k", ",", "i"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["i", "-", "j", "+", "1"]], ",", "j"]], "]"]], " ", SuperscriptBox["\[Nu]", RowBox[List["i", "-", "j"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["r", "=", "1"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "r"], " ", RowBox[List["StirlingS1", "[", RowBox[List["k", ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["r", "-", "m", "+", "j", "+", "1"]], ",", RowBox[List["m", "-", "j"]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[Nu]", "+", "1"]], ")"]], RowBox[List["r", "-", "m", "+", "j"]]]]]]]]]]]]]]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "k"]], "]"]], " ", RowBox[List["k", "!"]]]]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]]], "-", RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["\[Nu]", ",", "m"]], "}"]]]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]", "-", "\[Mu]"]], ",", RowBox[List["2", " ", "\[Mu]"]]]], "]"]]]], " ", RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", RowBox[List["-", "\[Mu]"]], ",", "2", ",", "z"]], "]"]]]], "-", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "1"]], "m"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "p"]], "]"]], " ", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["\[Nu]", ",", RowBox[List["m", "-", "p"]]]], "}"]]]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]", "-", "\[Mu]"]], ",", RowBox[List["2", " ", "\[Mu]"]]]], "]"]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["1", "-", "z"]], "2"], ")"]], "k"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "p"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["p", ",", "j"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "1"]], "k"], RowBox[List[RowBox[List["StirlingS1", "[", RowBox[List["k", ",", "i"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["i", "-", "j", "+", "1"]], ",", "j"]], "]"]], " ", SuperscriptBox["\[Nu]", RowBox[List["i", "-", "j"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["r", "=", "1"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "r"], " ", RowBox[List["StirlingS1", "[", RowBox[List["k", ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["r", "-", "p", "+", "j", "+", "1"]], ",", RowBox[List["p", "-", "j"]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[Nu]", "+", "1"]], ")"]], RowBox[List["r", "-", "p", "+", "j"]]]]]]]]]]]]]]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Mu]", "+", "k"]], "]"]], " ", RowBox[List["k", "!"]]]]]]]]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]]]]], ")"]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", FractionBox[RowBox[List["1", "-", "z"]], "2"], "]"]], "<", "1"]], "&&", RowBox[List["!", RowBox[List["\[Mu]", "\[Element]", "Integers"]]]], "&&", RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[GreaterEqual]", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|