|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.11.26.0024.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(UnitStep[Abs[z] - 1]/Sqrt[z^2 - 1])
(LegendreQ[\[Nu], \[Mu], 2, -(Sqrt[-1 + z^2]/z)] +
LegendreQ[\[Nu], \[Mu], 2, Sqrt[-1 + z^2]/z]) ==
(-((2^\[Mu] Pi^2 Tan[((\[Mu] + \[Nu])/2) Pi])/(Gamma[(1 - \[Mu] - \[Nu])/2]
Gamma[1 + (\[Nu] - \[Mu])/2])))
MeijerG[{{(1 + \[Mu])/2, (1 - \[Mu])/2}, {}},
{{}, {(1 + \[Nu])/2, -(\[Nu]/2)}}, z, 1/2] /;
!Element[\[Nu], Integers] && !Element[\[Mu], Integers] && Re[z] > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[FractionBox[RowBox[List["UnitStep", "[", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "-", "1"]], "]"]], SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", "1"]]]], RowBox[List["(", RowBox[List[RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "2", ",", RowBox[List["-", FractionBox[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]]], "z"]]]]], "]"]], "+", RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "2", ",", FractionBox[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]]], "z"]]], "]"]]]], ")"]]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["2", "\[Mu]"], SuperscriptBox["\[Pi]", "2"], RowBox[List["Tan", "[", RowBox[List[FractionBox[RowBox[List["\[Mu]", "+", "\[Nu]"]], "2"], "\[Pi]"]], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", FractionBox[RowBox[List["1", "-", "\[Mu]", "-", "\[Nu]"]], "2"], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", FractionBox[RowBox[List["\[Nu]", "-", "\[Mu]"]], "2"]]], " ", "]"]]]]]]], RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[FractionBox[RowBox[List["1", "+", "\[Mu]"]], "2"], ",", FractionBox[RowBox[List["1", "-", "\[Mu]"]], "2"]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox[RowBox[List["1", "+", "\[Nu]"]], "2"], ",", RowBox[List["-", FractionBox["\[Nu]", "2"]]]]], "}"]]]], "}"]], ",", "z", ",", FractionBox["1", "2"]]], "]"]]]]]], "/;", RowBox[List[RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List["\[Nu]", ",", "Integers"]], "]"]], "]"]], "\[And]", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List["\[Mu]", ",", "Integers"]], "]"]], "]"]], "\[And]", RowBox[List[RowBox[List["Re", "[", "z", "]"]], ">", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mfrac> <mrow> <mrow> <semantics> <mi> θ </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> z </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msubsup> <semantics> <mi> Q </mi> <annotation encoding='Mathematica'> TagBox["Q", LegendreQ] </annotation> </semantics> <mi> ν </mi> <mi> μ </mi> </msubsup> <mo> ( </mo> <semantics> <mfrac> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mi> z </mi> </mfrac> <annotation encoding='Mathematica'> TagBox[FractionBox[SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", "1"]]], "z"], HoldComplete[LegendreQ, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msubsup> <semantics> <mi> Q </mi> <annotation encoding='Mathematica'> TagBox["Q", LegendreQ] </annotation> </semantics> <mi> ν </mi> <mi> μ </mi> </msubsup> <mo> ( </mo> <semantics> <mrow> <mo> - </mo> <mfrac> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mi> z </mi> </mfrac> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["-", FractionBox[SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", "1"]]], "z"]]], HoldComplete[LegendreQ, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mn> 2 </mn> <mi> μ </mi> </msup> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mi> tan </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> μ </mi> <mo> + </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mrow> <mi> Γ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> μ </mi> <mo> - </mo> <mi> ν </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> ν </mi> <mo> - </mo> <mi> μ </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <mi> μ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> μ </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mi> ν </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["2", ",", "2"]], RowBox[List["0", ",", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[RowBox[List[TagBox["z", MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox["1", "2"], MeijerG, Rule[Editable, True]]]], MeijerG], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[FractionBox[RowBox[List["\[Mu]", "+", "1"]], "2"], MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List["1", "-", "\[Mu]"]], "2"], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[FractionBox[RowBox[List["\[Nu]", "+", "1"]], "2"], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["-", FractionBox["\[Nu]", "2"]]], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> ν </mi> <mo> ∉ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> μ </mi> <mo> ∉ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mi> Re </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> > </mo> <mn> 0 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <times /> <apply> <times /> <apply> <ci> UnitStep </ci> <apply> <plus /> <apply> <abs /> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> LegendreQ </ci> <ci> ν </ci> <ci> μ </ci> <cn type='integer'> 2 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> LegendreQ </ci> <ci> ν </ci> <ci> μ </ci> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> μ </ci> </apply> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> tan </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> μ </ci> <ci> ν </ci> </apply> <pi /> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <ci> Γ </ci> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <ci> Γ </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> ν </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> MeijerG </ci> <list> <list> <apply> <times /> <apply> <plus /> <ci> μ </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </list> <list /> </list> <list> <list /> <list> <apply> <times /> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </list> </list> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <and /> <apply> <notin /> <ci> ν </ci> <integers /> </apply> <apply> <notin /> <ci> μ </ci> <integers /> </apply> <apply> <gt /> <apply> <times /> <real /> <ci> z </ci> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", FractionBox[RowBox[List[RowBox[List["UnitStep", "[", RowBox[List[RowBox[List["Abs", "[", "z_", "]"]], "-", "1"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]_", ",", "\[Mu]_", ",", "2", ",", RowBox[List["-", FractionBox[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z_", "2"]]]], "z_"]]]]], "]"]], "+", RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]_", ",", "\[Mu]_", ",", "2", ",", FractionBox[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z_", "2"]]]], "z_"]]], "]"]]]], ")"]]]], SqrtBox[RowBox[List[SuperscriptBox["z_", "2"], "-", "1"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", "\[Mu]"], " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["Tan", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["\[Mu]", "+", "\[Nu]"]], ")"]], " ", "\[Pi]"]], "]"]]]], ")"]], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[FractionBox[RowBox[List["1", "+", "\[Mu]"]], "2"], ",", FractionBox[RowBox[List["1", "-", "\[Mu]"]], "2"]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox[RowBox[List["1", "+", "\[Nu]"]], "2"], ",", RowBox[List["-", FractionBox["\[Nu]", "2"]]]]], "}"]]]], "}"]], ",", "z", ",", FractionBox["1", "2"]]], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", "\[Mu]", "-", "\[Nu]"]], ")"]]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", FractionBox[RowBox[List["\[Nu]", "-", "\[Mu]"]], "2"]]], "]"]]]]]]], "/;", RowBox[List[RowBox[List["!", RowBox[List["\[Nu]", "\[Element]", "Integers"]]]], "&&", RowBox[List["!", RowBox[List["\[Mu]", "\[Element]", "Integers"]]]], "&&", RowBox[List[RowBox[List["Re", "[", "z", "]"]], ">", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|