Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
LegendreQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > LegendreQ[nu,mu,2,z] > Representations through more general functions > Through other functions > Involving some hypergeometric-type functions





http://functions.wolfram.com/07.11.26.0026.01









  


  










Input Form





LegendreQ[\[Nu], \[Mu], 2, z] == ((Pi Csc[\[Mu] Pi] Gamma[1 + \[Nu]])/ (2 Gamma[1 - \[Mu] + \[Nu]])) (Cos[\[Mu] Pi] ((1 + z)^(\[Mu]/2)/(1 - z)^(\[Mu]/2)) JacobiP[\[Nu], -\[Mu], \[Mu], z] - ((1 - z)^(\[Mu]/2)/(1 + z)^(\[Mu]/2)) JacobiP[\[Nu], \[Mu], -\[Mu], z]) /; !Element[\[Mu], Integers]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "2", ",", "z"]], "]"]], "\[Equal]", " ", RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", RowBox[List["Csc", "[", RowBox[List["\[Mu]", " ", "\[Pi]"]], "]"]], RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]]]], RowBox[List["2", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]], "]"]]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cos", "[", RowBox[List["\[Mu]", " ", "\[Pi]"]], "]"]], " ", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]]], RowBox[List["JacobiP", "[", RowBox[List["\[Nu]", ",", RowBox[List["-", "\[Mu]"]], ",", "\[Mu]", ",", "z"]], "]"]]]], "-", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]]], RowBox[List["JacobiP", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", RowBox[List["-", "\[Mu]"]], ",", "z"]], "]"]]]]]], ")"]]]]]], "/;", " ", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List["\[Mu]", ",", "Integers"]], "]"]], "]"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <semantics> <mi> Q </mi> <annotation encoding='Mathematica'> TagBox[&quot;Q&quot;, LegendreQ] </annotation> </semantics> <mi> &#957; </mi> <mi> &#956; </mi> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox[&quot;z&quot;, HoldComplete[LegendreQ, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mi> csc </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> - </mo> <mi> &#956; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> &#956; </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> &#956; </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <mi> P </mi> <mi> &#957; </mi> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#956; </mi> </mrow> <mo> , </mo> <mi> &#956; </mi> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> &#956; </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> &#956; </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <mi> P </mi> <mi> &#957; </mi> <mrow> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> , </mo> <mrow> <mo> - </mo> <mi> &#956; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> &#956; </mi> <mo> &#8713; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> LegendreQ </ci> <ci> &#957; </ci> <ci> &#956; </ci> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <pi /> <apply> <csc /> <apply> <times /> <ci> &#956; </ci> <pi /> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <cos /> <apply> <times /> <ci> &#956; </ci> <pi /> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> z </ci> </apply> <apply> <times /> <ci> &#956; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <ci> &#956; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> JacobiP </ci> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <ci> &#956; </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <ci> &#956; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> z </ci> </apply> <apply> <times /> <ci> &#956; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> JacobiP </ci> <ci> &#957; </ci> <ci> &#956; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <notin /> <ci> &#956; </ci> <integers /> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]_", ",", "\[Mu]_", ",", "2", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[Pi]", " ", RowBox[List["Csc", "[", RowBox[List["\[Mu]", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["Cos", "[", RowBox[List["\[Mu]", " ", "\[Pi]"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]], " ", RowBox[List["JacobiP", "[", RowBox[List["\[Nu]", ",", RowBox[List["-", "\[Mu]"]], ",", "\[Mu]", ",", "z"]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]]], "-", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]], " ", RowBox[List["JacobiP", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", RowBox[List["-", "\[Mu]"]], ",", "z"]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]]]]], ")"]]]], RowBox[List["2", " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]], "]"]]]]], "/;", RowBox[List["!", RowBox[List["\[Mu]", "\[Element]", "Integers"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29