html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 MeijerG

Series representations

Generalized power series

Expansions at generic point z==z0

For the function itself

Expansions on branch cuts ||| Expansions on branch cuts

For the function itself

For the function itself

Expansions at z==0

Case of simple poles

Case of poles of order r in the points -br-k/;r ∈ {1,2,3,4} && kN

Expansions at z==(-1)m+n-q for p==q

The general formula for arbitrary z

The general formula for psiqZ in the particular case |z|>1

The major terms in the general formulas for expansions of function p==q at z==(-1)m+n-q

Expansions at z==infinity

Case of simple poles

Case of poles of order r in the points -ar+k/;r ∈ {1,2,3,4} && kN+

Asymptotic series expansions at z==0 for q<p

Expansions for p==q+1

Expansions for p==q+2

Expansions for p>q+2

Asymptotic series expansions at z==infinity for q>p

Expansions for q==p+1

Expansions for q==p+2

Expansions for q>p+2

General formulas of asymptotic series expansions

Main terms of asymptotic expansions

Expansions at z==0

Expansions at z==(-1)m+n-q for p==q

Expansions at z==infinity

Residue representations