|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.41.06.0018.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ParabolicCylinderD[\[Nu], z] \[Proportional]
(Sqrt[Pi/2]/Gamma[-\[Nu]]) E^(z^2/4) (z^2)^(-1 - \[Nu]/2) (-z + Sqrt[z^2])
(1 + O[1/z^2]) - ((Sin[Pi \[Nu]]/2) Sqrt[-z^2] (z^2)^(-1 - \[Nu]/2)
(-z^4)^(\[Nu]/2) (Sqrt[-z^2] Csc[(Pi \[Nu])/2] + z Sec[(Pi \[Nu])/2])
(1 + O[1/z^2]))/E^(z^2/4) /; (Abs[z] -> Infinity)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ParabolicCylinderD", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List[FractionBox[SqrtBox[FractionBox["\[Pi]", "2"]], RowBox[List["Gamma", "[", RowBox[List["-", "\[Nu]"]], "]"]]], SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["z", "2"], "4"]], SuperscriptBox[RowBox[List["(", SuperscriptBox["z", "2"], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", FractionBox["\[Nu]", "2"]]]], RowBox[List["(", RowBox[List[RowBox[List["-", "z"]], "+", SqrtBox[SuperscriptBox["z", "2"]]]], ")"]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", SuperscriptBox["z", "2"]], "]"]]]], ")"]]]], "-", RowBox[List[FractionBox[RowBox[List[" ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]]]], "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox["z", "2"], "4"]]]], " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox["z", "2"], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", FractionBox["\[Nu]", "2"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "4"]]], ")"]], RowBox[List["\[Nu]", "/", "2"]]], RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["Csc", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "2"], "]"]]]], "+", RowBox[List["z", " ", RowBox[List["Sec", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "2"], "]"]]]]]], ")"]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", SuperscriptBox["z", "2"]], "]"]]]], ")"]]]]]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <semantics> <mi> D </mi> <annotation encoding='Mathematica'> TagBox["D", ParabolicCylinderD] </annotation> </semantics> <mi> ν </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ∝ </mo> <mrow> <mrow> <mfrac> <mrow> <mn> 1 </mn> <mtext> </mtext> </mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> ⁢ </mo> <msqrt> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </msqrt> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mn> 4 </mn> </mfrac> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mi> ν </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </msqrt> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mn> 4 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mi> ν </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> ν </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mi> csc </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mi> sec </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> z </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mi> ∞ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> ParabolicCylinderD </ci> <ci> ν </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> O </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <sin /> <apply> <times /> <pi /> <ci> ν </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <csc /> <apply> <times /> <pi /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <ci> z </ci> <apply> <sec /> <apply> <times /> <pi /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> O </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Rule </ci> <apply> <abs /> <ci> z </ci> </apply> <infinity /> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ParabolicCylinderD", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[SqrtBox[FractionBox["\[Pi]", "2"]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["z", "2"], "4"]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox["z", "2"], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", FractionBox["\[Nu]", "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "z"]], "+", SqrtBox[SuperscriptBox["z", "2"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["SeriesData", "[", RowBox[List["z", ",", "\[Infinity]", ",", RowBox[List["{", "0", "}"]], ",", "0", ",", "2"]], "]"]]]], ")"]]]], RowBox[List["Gamma", "[", RowBox[List["-", "\[Nu]"]], "]"]]], "-", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox["z", "2"], "4"]]]], " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox["z", "2"], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", FractionBox["\[Nu]", "2"]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "4"]]], ")"]], RowBox[List["\[Nu]", "/", "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["Csc", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "2"], "]"]]]], "+", RowBox[List["z", " ", RowBox[List["Sec", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "2"], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["SeriesData", "[", RowBox[List["z", ",", "\[Infinity]", ",", RowBox[List["{", "0", "}"]], ",", "0", ",", "2"]], "]"]]]], ")"]]]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|