Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











SixJSymbol






Mathematica Notation

Traditional Notation









Hypergeometric Functions > SixJSymbol[{j1,j2,j3},{j4,j5,j6}] > Specific values > One argument equal to zero





http://functions.wolfram.com/07.40.03.0005.01









  


  










Input Form





SixJSymbol[{Subscript[j, 1], Subscript[j, 2], Subscript[j, 3]}, {0, Subscript[j, 5], Subscript[j, 6]}] == ((-1)^(Subscript[j, 1] + Subscript[j, 2] + Subscript[j, 5])/ (Sqrt[2 Subscript[j, 2] + 1] Sqrt[2 Subscript[j, 3] + 1])) KroneckerDelta[Subscript[j, 2], Subscript[j, 6]] KroneckerDelta[Subscript[j, 3], Subscript[j, 5]] /; \[ScriptCapitalP]\[ScriptH]\[ScriptY]\[ScriptS]\[ScriptI]\[ScriptC]\ \[ScriptA]\[ScriptL]\[ScriptCapitalQ][{Subscript[j, 1], Subscript[j, 2], Subscript[j, 3]}, {0, Subscript[j, 5], Subscript[j, 6]}]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["SixJSymbol", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["j", "2"], ",", SubscriptBox["j", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List["0", ",", SubscriptBox["j", "5"], ",", SubscriptBox["j", "6"]]], "}"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "+", SubscriptBox["j", "5"]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["2", SubscriptBox["j", "2"]]], "+", "1"]]], SqrtBox[RowBox[List[RowBox[List["2", SubscriptBox["j", "3"]]], "+", "1"]]]]]], RowBox[List["KroneckerDelta", "[", RowBox[List[SubscriptBox["j", "2"], ",", SubscriptBox["j", "6"]]], "]"]], RowBox[List["KroneckerDelta", "[", RowBox[List[SubscriptBox["j", "3"], ",", SubscriptBox["j", "5"]]], "]"]]]]]], "/;", RowBox[List["\[ScriptCapitalP]\[ScriptH]\[ScriptY]\[ScriptS]\[ScriptI]\[ScriptC]\[ScriptA]\[ScriptL]\[ScriptCapitalQ]", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["j", "2"], ",", SubscriptBox["j", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List["0", ",", SubscriptBox["j", "5"], ",", SubscriptBox["j", "6"]]], "}"]]]], "]"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <semantics> <mo> { </mo> <annotation encoding='Mathematica'> TagBox[StyleBox[&quot;{&quot;, Rule[SpanMaxSize, DirectedInfinity[1]]], SixJSymbol] </annotation> </semantics> <mtext> &#8287; </mtext> <mtable> <mtr> <mtd> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mtd> </mtr> <mtr> <mtd> <mn> 0 </mn> </mtd> <mtd> <msub> <mi> j </mi> <mn> 5 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 6 </mn> </msub> </mtd> </mtr> </mtable> <mtext> &#8287; </mtext> <semantics> <mo> } </mo> <annotation encoding='Mathematica'> TagBox[StyleBox[&quot;}&quot;, Rule[SpanMaxSize, DirectedInfinity[1]]], SixJSymbol] </annotation> </semantics> </mrow> <mo> &#10869; </mo> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 5 </mn> </msub> </mrow> </msup> <mo> &#8290; </mo> <msub> <semantics> <mi> &#948; </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> j </mi> <mn> 6 </mn> </msub> </mrow> </msub> <mo> &#8290; </mo> <msub> <semantics> <mi> &#948; </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mrow> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> , </mo> <msub> <mi> j </mi> <mn> 5 </mn> </msub> </mrow> </msub> </mrow> <mrow> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> /; </mo> <mrow> <mi> &#119979;&#119997;&#120014;&#120008;&#119998;&#119992;&#119990;&#8467;&#119980; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> { </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <msub> <mi> j </mi> <mn> 5 </mn> </msub> <mo> , </mo> <msub> <mi> j </mi> <mn> 6 </mn> </msub> </mrow> <mo> } </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> SixJSymbol </ci> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </list> <list> <cn type='integer'> 0 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 5 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 6 </cn> </apply> </list> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <ci> KroneckerDelta </ci> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <ci> KroneckerDelta </ci> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> &#119979;&#119997;&#120014;&#120008;&#119998;&#119992;&#119990;&#8467;&#119980; </ci> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </list> <list> <cn type='integer'> 0 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 5 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 6 </cn> </apply> </list> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["SixJSymbol", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["j", "2"], ",", SubscriptBox["j", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List["0", ",", SubscriptBox["j", "5"], ",", SubscriptBox["j", "6"]]], "}"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "+", SubscriptBox["j", "5"]]]], " ", RowBox[List["KroneckerDelta", "[", RowBox[List[SubscriptBox["j", "2"], ",", SubscriptBox["j", "6"]]], "]"]], " ", RowBox[List["KroneckerDelta", "[", RowBox[List[SubscriptBox["j", "3"], ",", SubscriptBox["j", "5"]]], "]"]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["2", " ", SubscriptBox["j", "2"]]], "+", "1"]]], " ", SqrtBox[RowBox[List[RowBox[List["2", " ", SubscriptBox["j", "3"]]], "+", "1"]]]]]], "/;", RowBox[List["\[ScriptCapitalP]\[ScriptH]\[ScriptY]\[ScriptS]\[ScriptI]\[ScriptC]\[ScriptA]\[ScriptL]\[ScriptCapitalQ]", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["j", "2"], ",", SubscriptBox["j", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List["0", ",", SubscriptBox["j", "5"], ",", SubscriptBox["j", "6"]]], "}"]]]], "]"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-12-21