|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.40.23.0028.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Sum[(2 Subscript[k, 1] + 1) (2 Subscript[k, 2] + 1) (2 Subscript[k, 3] + 1)
NineJSymbol[{Subscript[k, 1], Subscript[k, 2], Subscript[k, 3]},
{Subscript[j, 1], Subscript[j, 2], Subscript[j, 3]},
{Subscript[j, 4], Subscript[j, 5], Subscript[j, 6]}]
SixJSymbol[{Subscript[k, 1], Subscript[k, 2], Subscript[k, 3]},
{Subscript[j, 3], Subscript[j, 6], Subscript[j, 7]}]
SixJSymbol[{Subscript[k, 1], Subscript[j, 4], Subscript[j, 1]},
{Subscript[j, 8], Subscript[j, 7], Subscript[j, 6]}]
SixJSymbol[{Subscript[k, 2], Subscript[j, 5], Subscript[j, 2]},
{Subscript[j, 9], Subscript[j, 3], Subscript[j, 7]}],
{Subscript[k, 1], Max[Abs[Subscript[j, 1] - Subscript[j, 4]],
Abs[Subscript[j, 6] - Subscript[j, 7]]],
Min[Subscript[j, 1] + Subscript[j, 4], Subscript[j, 6] +
Subscript[j, 7]]}, {Subscript[k, 2],
Max[Abs[Subscript[j, 2] - Subscript[j, 5]],
Abs[Subscript[j, 3] - Subscript[j, 7]]],
Min[Subscript[j, 2] + Subscript[j, 5], Subscript[j, 3] +
Subscript[j, 7]]}, {Subscript[k, 3],
Max[Abs[Subscript[j, 3] - Subscript[j, 6]],
Abs[Subscript[k, 1] - Subscript[k, 2]]],
Min[Subscript[j, 3] + Subscript[j, 6], Subscript[k, 1] +
Subscript[k, 2]]}] == ((-1)^(2 Subscript[j, 1] + 2 Subscript[j, 5])/
((2 Subscript[j, 1] + 1) (2 Subscript[j, 5] + 1)))
KroneckerDelta[Subscript[j, 1], Subscript[j, 9]]
KroneckerDelta[Subscript[j, 5], Subscript[j, 8]] /;
\[ScriptCapitalT]\[ScriptR]\[ScriptI]\[ScriptA]\[ScriptN]\[ScriptG]\
\[ScriptU]\[ScriptL]\[ScriptA]\[ScriptR]\[ScriptCapitalQ][Subscript[j, 1],
Subscript[j, 2], Subscript[j, 3]] && \[ScriptCapitalT]\[ScriptR]\[ScriptI]\
\[ScriptA]\[ScriptN]\[ScriptG]\[ScriptU]\[ScriptL]\[ScriptA]\[ScriptR]\
\[ScriptCapitalQ][Subscript[j, 4], Subscript[j, 5], Subscript[j, 6]] &&
\[ScriptCapitalT]\[ScriptR]\[ScriptI]\[ScriptA]\[ScriptN]\[ScriptG]\
\[ScriptU]\[ScriptL]\[ScriptA]\[ScriptR]\[ScriptCapitalQ][Subscript[j, 1],
Subscript[j, 5], Subscript[j, 7]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "1"], "=", RowBox[List["Max", "[", RowBox[List[RowBox[List["Abs", "[", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["j", "4"]]], "]"]], ",", RowBox[List["Abs", "[", RowBox[List[SubscriptBox["j", "6"], "-", SubscriptBox["j", "7"]]], "]"]]]], "]"]]]], RowBox[List["Min", "[", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "4"]]], ",", RowBox[List[SubscriptBox["j", "6"], "+", SubscriptBox["j", "7"]]]]], "]"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "2"], "=", RowBox[List["Max", "[", RowBox[List[RowBox[List["Abs", "[", RowBox[List[SubscriptBox["j", "2"], "-", SubscriptBox["j", "5"]]], "]"]], ",", RowBox[List["Abs", "[", RowBox[List[SubscriptBox["j", "3"], "-", SubscriptBox["j", "7"]]], "]"]]]], "]"]]]], RowBox[List["Min", "[", RowBox[List[RowBox[List[SubscriptBox["j", "2"], "+", SubscriptBox["j", "5"]]], ",", RowBox[List[SubscriptBox["j", "3"], "+", SubscriptBox["j", "7"]]]]], "]"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "3"], "=", RowBox[List["Max", "[", RowBox[List[RowBox[List["Abs", "[", RowBox[List[SubscriptBox["j", "3"], "-", SubscriptBox["j", "6"]]], "]"]], ",", RowBox[List["Abs", "[", RowBox[List[SubscriptBox["k", "1"], "-", SubscriptBox["k", "2"]]], "]"]]]], "]"]]]], RowBox[List["Min", "[", RowBox[List[RowBox[List[SubscriptBox["j", "3"], "+", SubscriptBox["j", "6"]]], ",", RowBox[List[SubscriptBox["k", "1"], "+", SubscriptBox["k", "2"]]]]], "]"]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", SubscriptBox["k", "1"]]], "+", "1"]], ")"]], RowBox[List["(", RowBox[List[RowBox[List["2", SubscriptBox["k", "2"]]], "+", "1"]], ")"]], RowBox[List["(", RowBox[List[RowBox[List["2", SubscriptBox["k", "3"]]], "+", "1"]], ")"]], RowBox[List["NineJSymbol", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["k", "1"], ",", SubscriptBox["k", "2"], ",", SubscriptBox["k", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["j", "2"], ",", SubscriptBox["j", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "4"], ",", SubscriptBox["j", "5"], ",", SubscriptBox["j", "6"]]], "}"]]]], "]"]], RowBox[List["SixJSymbol", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["k", "1"], ",", SubscriptBox["k", "2"], ",", SubscriptBox["k", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "3"], ",", SubscriptBox["j", "6"], ",", SubscriptBox["j", "7"]]], "}"]]]], "]"]], RowBox[List["SixJSymbol", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["k", "1"], ",", SubscriptBox["j", "4"], ",", SubscriptBox["j", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "8"], ",", SubscriptBox["j", "7"], ",", SubscriptBox["j", "6"]]], "}"]]]], "]"]], RowBox[List["SixJSymbol", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["k", "2"], ",", SubscriptBox["j", "5"], ",", SubscriptBox["j", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "9"], ",", SubscriptBox["j", "3"], ",", SubscriptBox["j", "7"]]], "}"]]]], "]"]]]]]]]]]], "\[Equal]", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["2", SubscriptBox["j", "1"]]], "+", RowBox[List["2", SubscriptBox["j", "5"]]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", SubscriptBox["j", "1"]]], "+", "1"]], ")"]], RowBox[List["(", RowBox[List[RowBox[List["2", SubscriptBox["j", "5"]]], "+", "1"]], ")"]]]]], RowBox[List["KroneckerDelta", "[", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["j", "9"]]], "]"]], RowBox[List["KroneckerDelta", "[", RowBox[List[SubscriptBox["j", "5"], ",", SubscriptBox["j", "8"]]], "]"]]]]]], "/;", RowBox[List[RowBox[List["\[ScriptCapitalT]\[ScriptR]\[ScriptI]\[ScriptA]\[ScriptN]\[ScriptG]\[ScriptU]\[ScriptL]\[ScriptA]\[ScriptR]\[ScriptCapitalQ]", "[", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["j", "2"], ",", SubscriptBox["j", "3"]]], "]"]], "\[And]", RowBox[List["\[ScriptCapitalT]\[ScriptR]\[ScriptI]\[ScriptA]\[ScriptN]\[ScriptG]\[ScriptU]\[ScriptL]\[ScriptA]\[ScriptR]\[ScriptCapitalQ]", "[", RowBox[List[SubscriptBox["j", "4"], ",", SubscriptBox["j", "5"], ",", SubscriptBox["j", "6"]]], "]"]], "\[And]", RowBox[List["\[ScriptCapitalT]\[ScriptR]\[ScriptI]\[ScriptA]\[ScriptN]\[ScriptG]\[ScriptU]\[ScriptL]\[ScriptA]\[ScriptR]\[ScriptCapitalQ]", "[", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["j", "5"], ",", SubscriptBox["j", "7"]]], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <msub> <mi> k </mi> <mn> 1 </mn> </msub> <mo> = </mo> <mrow> <mi> max </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 4 </mn> </msub> </mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> , </mo> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mrow> <msub> <mi> j </mi> <mn> 6 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 7 </mn> </msub> </mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> min </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 4 </mn> </msub> </mrow> <mo> , </mo> <mrow> <msub> <mi> j </mi> <mn> 6 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 7 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> </munderover> <mrow> <munderover> <mo> ∑ </mo> <mrow> <msub> <mi> k </mi> <mn> 2 </mn> </msub> <mo> = </mo> <mrow> <mi> max </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 5 </mn> </msub> </mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> , </mo> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mrow> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 7 </mn> </msub> </mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> min </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 5 </mn> </msub> </mrow> <mo> , </mo> <mrow> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 7 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> </munderover> <mrow> <munderover> <mo> ∑ </mo> <mrow> <msub> <mi> k </mi> <mn> 3 </mn> </msub> <mo> = </mo> <mrow> <mi> max </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mrow> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 6 </mn> </msub> </mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> , </mo> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mrow> <msub> <mi> k </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> k </mi> <mn> 2 </mn> </msub> </mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> min </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 6 </mn> </msub> </mrow> <mo> , </mo> <mrow> <msub> <mi> k </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> k </mi> <mn> 2 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> </munderover> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> k </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> k </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> k </mi> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> { </mo> <mtable> <mtr> <mtd> <msub> <mi> k </mi> <mn> 1 </mn> </msub> </mtd> <mtd> <msub> <mi> k </mi> <mn> 2 </mn> </msub> </mtd> <mtd> <msub> <mi> k </mi> <mn> 3 </mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi> j </mi> <mn> 4 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 5 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 6 </mn> </msub> </mtd> </mtr> </mtable> <mo> } </mo> </mrow> <mo> ⁢ </mo> <mrow> <semantics> <mo> { </mo> <annotation encoding='Mathematica'> TagBox[StyleBox["{", Rule[SpanMaxSize, DirectedInfinity[1]]], SixJSymbol] </annotation> </semantics> <mtext>   </mtext> <mtable> <mtr> <mtd> <msub> <mi> k </mi> <mn> 1 </mn> </msub> </mtd> <mtd> <msub> <mi> k </mi> <mn> 2 </mn> </msub> </mtd> <mtd> <msub> <mi> k </mi> <mn> 3 </mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 6 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 7 </mn> </msub> </mtd> </mtr> </mtable> <mtext>   </mtext> <semantics> <mo> } </mo> <annotation encoding='Mathematica'> TagBox[StyleBox["}", Rule[SpanMaxSize, DirectedInfinity[1]]], SixJSymbol] </annotation> </semantics> </mrow> <mo> ⁢ </mo> <mrow> <semantics> <mo> { </mo> <annotation encoding='Mathematica'> TagBox[StyleBox["{", Rule[SpanMaxSize, DirectedInfinity[1]]], SixJSymbol] </annotation> </semantics> <mtext>   </mtext> <mtable> <mtr> <mtd> <msub> <mi> k </mi> <mn> 1 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 4 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi> j </mi> <mn> 8 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 7 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 6 </mn> </msub> </mtd> </mtr> </mtable> <mtext>   </mtext> <semantics> <mo> } </mo> <annotation encoding='Mathematica'> TagBox[StyleBox["}", Rule[SpanMaxSize, DirectedInfinity[1]]], SixJSymbol] </annotation> </semantics> </mrow> <mo> ⁢ </mo> <mrow> <semantics> <mo> { </mo> <annotation encoding='Mathematica'> TagBox[StyleBox["{", Rule[SpanMaxSize, DirectedInfinity[1]]], SixJSymbol] </annotation> </semantics> <mtext>   </mtext> <mtable> <mtr> <mtd> <msub> <mi> k </mi> <mn> 2 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 5 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi> j </mi> <mn> 9 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 7 </mn> </msub> </mtd> </mtr> </mtable> <mtext>   </mtext> <semantics> <mo> } </mo> <annotation encoding='Mathematica'> TagBox[StyleBox["}", Rule[SpanMaxSize, DirectedInfinity[1]]], SixJSymbol] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> j </mi> <mn> 5 </mn> </msub> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msub> <semantics> <mi> δ </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> j </mi> <mn> 9 </mn> </msub> </mrow> </msub> <mo> ⁢ </mo> <msub> <semantics> <mi> δ </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mrow> <msub> <mi> j </mi> <mn> 5 </mn> </msub> <mo> , </mo> <msub> <mi> j </mi> <mn> 8 </mn> </msub> </mrow> </msub> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> j </mi> <mn> 5 </mn> </msub> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> 𝒯𝓇𝒾𝒶𝓃ℊ𝓊ℓ𝒶𝓇𝒬 </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ∧ </mo> <mrow> <mi> 𝒯𝓇𝒾𝒶𝓃ℊ𝓊ℓ𝒶𝓇𝒬 </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 4 </mn> </msub> <mo> , </mo> <msub> <mi> j </mi> <mn> 5 </mn> </msub> <mo> , </mo> <msub> <mi> j </mi> <mn> 6 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ∧ </mo> <mrow> <mi> 𝒯𝓇𝒾𝒶𝓃ℊ𝓊ℓ𝒶𝓇𝒬 </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> j </mi> <mn> 5 </mn> </msub> <mo> , </mo> <msub> <mi> j </mi> <mn> 7 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <sum /> <bvar> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 3 </cn> </apply> </bvar> <lowlimit> <apply> <max /> <apply> <abs /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> </apply> <apply> <abs /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </lowlimit> <uplimit> <apply> <min /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </uplimit> <apply> <sum /> <bvar> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </bvar> <lowlimit> <apply> <max /> <apply> <abs /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> </apply> <apply> <abs /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> </apply> </apply> </lowlimit> <uplimit> <apply> <min /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> </uplimit> <apply> <sum /> <bvar> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </bvar> <lowlimit> <apply> <max /> <apply> <abs /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> </apply> <apply> <abs /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 6 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> </apply> </apply> </lowlimit> <uplimit> <apply> <min /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 6 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <list> <list> <list> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 3 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 4 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 5 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 6 </cn> </apply> </list> </list> </list> <apply> <ci> SixJSymbol </ci> <list> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 3 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 6 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 7 </cn> </apply> </list> </apply> <apply> <ci> SixJSymbol </ci> <list> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 4 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 8 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 7 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 6 </cn> </apply> </list> </apply> <apply> <ci> SixJSymbol </ci> <list> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 5 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 9 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 7 </cn> </apply> </list> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> </apply> <apply> <ci> KroneckerDelta </ci> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <ci> KroneckerDelta </ci> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 5 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 5 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <and /> <apply> <ci> 𝒯𝓇𝒾𝒶𝓃ℊ𝓊ℓ𝒶𝓇𝒬 </ci> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <ci> 𝒯𝓇𝒾𝒶𝓃ℊ𝓊ℓ𝒶𝓇𝒬 </ci> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 4 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 5 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <ci> 𝒯𝓇𝒾𝒶𝓃ℊ𝓊ℓ𝒶𝓇𝒬 </ci> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 5 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "1"], "=", RowBox[List["Max", "[", RowBox[List[RowBox[List["Abs", "[", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["j", "4"]]], "]"]], ",", RowBox[List["Abs", "[", RowBox[List[SubscriptBox["j", "6"], "-", SubscriptBox["j", "7"]]], "]"]]]], "]"]]]], RowBox[List["Min", "[", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "4"]]], ",", RowBox[List[SubscriptBox["j", "6"], "+", SubscriptBox["j", "7"]]]]], "]"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "2"], "=", RowBox[List["Max", "[", RowBox[List[RowBox[List["Abs", "[", RowBox[List[SubscriptBox["j", "2"], "-", SubscriptBox["j", "5"]]], "]"]], ",", RowBox[List["Abs", "[", RowBox[List[SubscriptBox["j", "3"], "-", SubscriptBox["j", "7"]]], "]"]]]], "]"]]]], RowBox[List["Min", "[", RowBox[List[RowBox[List[SubscriptBox["j", "2"], "+", SubscriptBox["j", "5"]]], ",", RowBox[List[SubscriptBox["j", "3"], "+", SubscriptBox["j", "7"]]]]], "]"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "3"], "=", RowBox[List["Max", "[", RowBox[List[RowBox[List["Abs", "[", RowBox[List[SubscriptBox["j", "3"], "-", SubscriptBox["j", "6"]]], "]"]], ",", RowBox[List["Abs", "[", RowBox[List[SubscriptBox["k", "1"], "-", SubscriptBox["k", "2"]]], "]"]]]], "]"]]]], RowBox[List["Min", "[", RowBox[List[RowBox[List[SubscriptBox["j", "3"], "+", SubscriptBox["j", "6"]]], ",", RowBox[List[SubscriptBox["k", "1"], "+", SubscriptBox["k", "2"]]]]], "]"]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", SubscriptBox["k", "1"]]], "+", "1"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SubscriptBox["k", "2"]]], "+", "1"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SubscriptBox["k", "3"]]], "+", "1"]], ")"]], " ", RowBox[List["NineJSymbol", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["k", "1"], ",", SubscriptBox["k", "2"], ",", SubscriptBox["k", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["j", "2"], ",", SubscriptBox["j", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "4"], ",", SubscriptBox["j", "5"], ",", SubscriptBox["j", "6"]]], "}"]]]], "]"]], " ", RowBox[List["SixJSymbol", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["k", "1"], ",", SubscriptBox["k", "2"], ",", SubscriptBox["k", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "3"], ",", SubscriptBox["j", "6"], ",", SubscriptBox["j", "7"]]], "}"]]]], "]"]], " ", RowBox[List["SixJSymbol", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["k", "1"], ",", SubscriptBox["j", "4"], ",", SubscriptBox["j", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "8"], ",", SubscriptBox["j", "7"], ",", SubscriptBox["j", "6"]]], "}"]]]], "]"]], " ", RowBox[List["SixJSymbol", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["k", "2"], ",", SubscriptBox["j", "5"], ",", SubscriptBox["j", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "9"], ",", SubscriptBox["j", "3"], ",", SubscriptBox["j", "7"]]], "}"]]]], "]"]]]]]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["2", " ", SubscriptBox["j", "1"]]], "+", RowBox[List["2", " ", SubscriptBox["j", "5"]]]]]], " ", RowBox[List["KroneckerDelta", "[", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["j", "9"]]], "]"]], " ", RowBox[List["KroneckerDelta", "[", RowBox[List[SubscriptBox["j", "5"], ",", SubscriptBox["j", "8"]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", SubscriptBox["j", "1"]]], "+", "1"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SubscriptBox["j", "5"]]], "+", "1"]], ")"]]]]], "/;", RowBox[List[RowBox[List["\[ScriptCapitalT]\[ScriptR]\[ScriptI]\[ScriptA]\[ScriptN]\[ScriptG]\[ScriptU]\[ScriptL]\[ScriptA]\[ScriptR]\[ScriptCapitalQ]", "[", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["j", "2"], ",", SubscriptBox["j", "3"]]], "]"]], "&&", RowBox[List["\[ScriptCapitalT]\[ScriptR]\[ScriptI]\[ScriptA]\[ScriptN]\[ScriptG]\[ScriptU]\[ScriptL]\[ScriptA]\[ScriptR]\[ScriptCapitalQ]", "[", RowBox[List[SubscriptBox["j", "4"], ",", SubscriptBox["j", "5"], ",", SubscriptBox["j", "6"]]], "]"]], "&&", RowBox[List["\[ScriptCapitalT]\[ScriptR]\[ScriptI]\[ScriptA]\[ScriptN]\[ScriptG]\[ScriptU]\[ScriptL]\[ScriptA]\[ScriptR]\[ScriptCapitalQ]", "[", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["j", "5"], ",", SubscriptBox["j", "7"]]], "]"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|