|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.37.04.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SphericalHarmonicY[-\[Lambda], \[Mu], \[CurlyTheta], \[CurlyPhi]] ==
((Sqrt[1 - 2 \[Lambda]] Sqrt[Gamma[1 - \[Lambda] - \[Mu]]]
Sqrt[Gamma[\[Lambda] + \[Mu]]])/(Sqrt[2 \[Lambda] - 1]
Sqrt[Gamma[1 - \[Lambda] + \[Mu]]] Sqrt[Gamma[\[Lambda] - \[Mu]]]))
SphericalHarmonicY[\[Lambda] - 1, \[Mu], \[CurlyTheta], \[CurlyPhi]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["SphericalHarmonicY", "[", RowBox[List[RowBox[List["-", "\[Lambda]"]], ",", "\[Mu]", ",", "\[CurlyTheta]", ",", "\[CurlyPhi]"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SqrtBox[RowBox[List["1", "-", RowBox[List["2", " ", "\[Lambda]"]]]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Lambda]", "-", "\[Mu]"]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["\[Lambda]", "+", "\[Mu]"]], "]"]]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "-", "1"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Lambda]", "+", "\[Mu]"]], "]"]]], SqrtBox[RowBox[List["Gamma", "[", RowBox[List["\[Lambda]", "-", "\[Mu]"]], "]"]]]]]], RowBox[List["SphericalHarmonicY", "[", RowBox[List[RowBox[List["\[Lambda]", "-", "1"]], ",", "\[Mu]", ",", "\[CurlyTheta]", ",", "\[CurlyPhi]"]], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msubsup> <mi> Y </mi> <mrow> <mo> - </mo> <mi> λ </mi> </mrow> <mi> μ </mi> </msubsup> <mo> ( </mo> <mrow> <mi> ϑ </mi> <mo> , </mo> <mi> φ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> λ </mi> </mrow> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> λ </mi> <mo> - </mo> <mi> μ </mi> </mrow> <mo> ) </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> λ </mi> <mo> + </mo> <mi> μ </mi> </mrow> <mo> ) </mo> </mrow> </msqrt> </mrow> <mrow> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> λ </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <mtext> </mtext> <msqrt> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> λ </mi> <mo> + </mo> <mi> μ </mi> </mrow> <mo> ) </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> λ </mi> <mo> - </mo> <mi> μ </mi> </mrow> <mo> ) </mo> </mrow> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <msubsup> <mi> Y </mi> <mrow> <mi> λ </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> μ </mi> </msubsup> <mo> ( </mo> <mrow> <mi> ϑ </mi> <mo> , </mo> <mi> φ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> SphericalHarmonicY </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> λ </ci> </apply> <ci> μ </ci> <ci> ϑ </ci> <ci> φ </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> λ </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> λ </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> λ </ci> <ci> μ </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> λ </ci> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> λ </ci> </apply> <ci> μ </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> λ </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> SphericalHarmonicY </ci> <apply> <plus /> <ci> λ </ci> <cn type='integer'> -1 </cn> </apply> <ci> μ </ci> <ci> ϑ </ci> <ci> φ </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["SphericalHarmonicY", "[", RowBox[List[RowBox[List["-", "\[Lambda]_"]], ",", "\[Mu]_", ",", "\[CurlyTheta]_", ",", "\[CurlyPhi]_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", RowBox[List["2", " ", "\[Lambda]"]]]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Lambda]", "-", "\[Mu]"]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["\[Lambda]", "+", "\[Mu]"]], "]"]]]]], ")"]], " ", RowBox[List["SphericalHarmonicY", "[", RowBox[List[RowBox[List["\[Lambda]", "-", "1"]], ",", "\[Mu]", ",", "\[CurlyTheta]", ",", "\[CurlyPhi]"]], "]"]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "-", "1"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Lambda]", "+", "\[Mu]"]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["\[Lambda]", "-", "\[Mu]"]], "]"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|