|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.37.06.0026.02
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SphericalHarmonicY[\[Lambda], \[Mu], \[CurlyTheta],
\[CurlyPhi]] \[Proportional]
((Sqrt[2 \[Lambda] + 1] Sqrt[Gamma[\[Lambda] - \[Mu] + 1]])/
(2 Pi Sqrt[Gamma[\[Lambda] + \[Mu] + 1]])) E^(I \[CurlyPhi] \[Mu])
((Cos[\[CurlyTheta]/2]^2)^(\[Mu]/2)/(Sin[\[CurlyTheta]/2]^2)^(\[Mu]/2))
(((2^\[Lambda] (Cos[\[CurlyTheta]] - 1)^\[Lambda])/
Gamma[\[Lambda] - \[Mu] + 1]) Gamma[1/2 + \[Lambda]]
(1 + (\[Mu] - \[Lambda])/(1 - Cos[\[CurlyTheta]]) +
((1 - \[Lambda]) (\[Mu] - \[Lambda]) (1 + \[Mu] - \[Lambda]))/
((1 - 2 \[Lambda]) (1 - Cos[\[CurlyTheta]])^2) + \[Ellipsis]) +
((2^(-1 - \[Lambda]) (z - 1)^(-1 - \[Lambda]))/Gamma[-\[Mu] - \[Lambda]])
Gamma[-(1/2) - \[Lambda]] (1 + (1 + \[Mu] + \[Lambda])/
(1 - Cos[\[CurlyTheta]]) + ((2 + \[Lambda]) (1 + \[Mu] + \[Lambda])
(2 + \[Mu] + \[Lambda]))/((3 + 2 \[Lambda]) (Cos[\[CurlyTheta]] - 1)^
2) + \[Ellipsis])) /; Abs[Sin[\[CurlyTheta]/2]] > 1 &&
!Element[2 \[Lambda], Integers]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["SphericalHarmonicY", "[", RowBox[List["\[Lambda]", ",", "\[Mu]", ",", "\[CurlyTheta]", ",", "\[CurlyPhi]"]], "]"]], "\[Proportional]", RowBox[List[FractionBox[RowBox[List[SqrtBox[RowBox[List[RowBox[List["2", "\[Lambda]"]], "+", "1"]]], SqrtBox[RowBox[List["Gamma", "[", RowBox[List["\[Lambda]", "-", "\[Mu]", "+", "1"]], "]"]]]]], RowBox[List["2", "\[Pi]", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["\[Lambda]", "+", "\[Mu]", "+", "1"]], "]"]]]]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[CurlyPhi]", " ", "\[Mu]"]]], FractionBox[SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["Cos", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "2"], ")"]], RowBox[List["\[Mu]", "/", "2"]]], SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["Sin", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "2"], ")"]], RowBox[List["\[Mu]", "/", "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", "\[Lambda]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]], "-", "1"]], ")"]], "\[Lambda]"]]], RowBox[List["Gamma", "[", RowBox[List["\[Lambda]", "-", "\[Mu]", "+", "1"]], "]"]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "\[Lambda]"]], "]"]], RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["\[Mu]", "-", "\[Lambda]"]], RowBox[List["1", "-", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", "\[Lambda]"]], ")"]], " ", RowBox[List["(", RowBox[List["\[Mu]", "-", "\[Lambda]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "\[Mu]", "-", "\[Lambda]"]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "\[Lambda]"]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]], ")"]], "2"], " "]]], "+", "\[Ellipsis]"]], ")"]]]], "+", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "\[Lambda]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "\[Lambda]"]]], " "]], RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "\[Mu]"]], "-", "\[Lambda]"]], "]"]]], RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "\[Lambda]"]], "]"]], RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["1", "+", "\[Mu]", "+", "\[Lambda]"]], RowBox[List["1", "-", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", "+", "\[Lambda]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "\[Mu]", "+", "\[Lambda]"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "\[Mu]", "+", "\[Lambda]"]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "\[Lambda]"]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]], "-", "1"]], ")"]], "2"]]]], "+", "\[Ellipsis]"]], ")"]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", RowBox[List["Sin", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "]"]], ">", "1"]], "\[And]", RowBox[List["Not", "[", RowBox[List[RowBox[List["2", "\[Lambda]"]], "\[Element]", "Integers"]], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mi> Y </mi> <mi> λ </mi> <mi> μ </mi> </msubsup> <mo> ( </mo> <mrow> <mi> ϑ </mi> <mo> , </mo> <mi> φ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ∝ </mo> <mrow> <mfrac> <mrow> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> λ </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> λ </mi> <mo> - </mo> <mi> μ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> φ </mi> <mo> ⁢ </mo> <mi> μ </mi> </mrow> </msup> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> λ </mi> <mo> + </mo> <mi> μ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mfrac> <msup> <mrow> <msup> <mi> cos </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mi> ϑ </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mi> μ </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <msup> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mi> ϑ </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mi> μ </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mi> λ </mi> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> ϑ </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> λ </mi> </msup> </mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> λ </mi> <mo> - </mo> <mi> μ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> λ </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mrow> <mi> μ </mi> <mo> - </mo> <mi> λ </mi> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> ϑ </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> λ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> μ </mi> <mo> - </mo> <mi> λ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> μ </mi> <mo> - </mo> <mi> λ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> λ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> ϑ </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mtext> </mtext> </mrow> </mfrac> <mo> + </mo> <mo> … </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> - </mo> <mi> λ </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> - </mo> <mi> λ </mi> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> λ </mi> </mrow> <mo> - </mo> <mi> μ </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> λ </mi> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> μ </mi> <mo> + </mo> <mi> λ </mi> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> ϑ </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> + </mo> <mi> λ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> μ </mi> <mo> + </mo> <mi> λ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> + </mo> <mi> μ </mi> <mo> + </mo> <mi> λ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> λ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> ϑ </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mo> … </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mi> ϑ </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> > </mo> <mn> 1 </mn> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> λ </mi> </mrow> <mo> ∉ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> SphericalHarmonicY </ci> <ci> λ </ci> <ci> μ </ci> <ci> ϑ </ci> <ci> φ </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> λ </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> λ </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> φ </ci> <ci> μ </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> λ </ci> <ci> μ </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <power /> <apply> <cos /> <apply> <times /> <ci> ϑ </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> μ </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <power /> <apply> <sin /> <apply> <times /> <ci> ϑ </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> μ </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> λ </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <cos /> <ci> ϑ </ci> </apply> <cn type='integer'> -1 </cn> </apply> <ci> λ </ci> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> λ </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> λ </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <ci> μ </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> λ </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <cos /> <ci> ϑ </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> λ </ci> </apply> </apply> <apply> <plus /> <ci> μ </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> λ </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> μ </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> λ </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> λ </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <cos /> <ci> ϑ </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> … </ci> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> λ </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> λ </ci> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> λ </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> λ </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> μ </ci> <ci> λ </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <cos /> <ci> ϑ </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 2 </cn> <ci> λ </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> μ </ci> <ci> λ </ci> </apply> <apply> <plus /> <cn type='integer'> 2 </cn> <ci> μ </ci> <ci> λ </ci> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> λ </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <cos /> <ci> ϑ </ci> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> … </ci> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <gt /> <apply> <abs /> <apply> <sin /> <apply> <times /> <ci> ϑ </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <notin /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> λ </ci> </apply> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["SphericalHarmonicY", "[", RowBox[List["\[Lambda]_", ",", "\[Mu]_", ",", "\[CurlyTheta]_", ",", "\[CurlyPhi]_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "1"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["\[Lambda]", "-", "\[Mu]", "+", "1"]], "]"]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[CurlyPhi]", " ", "\[Mu]"]]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["Cos", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "2"], ")"]], RowBox[List["\[Mu]", "/", "2"]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", "\[Lambda]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]], "-", "1"]], ")"]], "\[Lambda]"]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "\[Lambda]"]], "]"]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["\[Mu]", "-", "\[Lambda]"]], RowBox[List["1", "-", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", "\[Lambda]"]], ")"]], " ", RowBox[List["(", RowBox[List["\[Mu]", "-", "\[Lambda]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "\[Mu]", "-", "\[Lambda]"]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "\[Lambda]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]], ")"]], "2"]]]], "+", "\[Ellipsis]"]], ")"]]]], RowBox[List["Gamma", "[", RowBox[List["\[Lambda]", "-", "\[Mu]", "+", "1"]], "]"]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "\[Lambda]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "\[Lambda]"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "\[Lambda]"]], "]"]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["1", "+", "\[Mu]", "+", "\[Lambda]"]], RowBox[List["1", "-", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", "+", "\[Lambda]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "\[Mu]", "+", "\[Lambda]"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "\[Mu]", "+", "\[Lambda]"]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "\[Lambda]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]], "-", "1"]], ")"]], "2"]]]], "+", "\[Ellipsis]"]], ")"]]]], RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "\[Mu]"]], "-", "\[Lambda]"]], "]"]]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["2", " ", "\[Pi]", " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["\[Lambda]", "+", "\[Mu]", "+", "1"]], "]"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["Sin", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "2"], ")"]], RowBox[List["\[Mu]", "/", "2"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", RowBox[List["Sin", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "]"]], ">", "1"]], "&&", RowBox[List["!", RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "\[Element]", "Integers"]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|