Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
SphericalHarmonicY






Mathematica Notation

Traditional Notation









Hypergeometric Functions > SphericalHarmonicY[lambda,mu,theta,phi] > Series representations > Generalized power series > Expansions at cos(theta)==infinity





http://functions.wolfram.com/07.37.06.0036.01









  


  










Input Form





SphericalHarmonicY[\[Lambda], \[Mu], \[CurlyTheta], \[CurlyPhi]] == Sqrt[(2 \[Lambda] + 1)/Pi] (Sqrt[Gamma[\[Lambda] - \[Mu] + 1]]/ Sqrt[Gamma[\[Lambda] + \[Mu] + 1]]) E^(I \[CurlyPhi] \[Mu]) (((-1)^(2 \[Lambda] + 1) 2^\[Lambda])/(Gamma[-\[Mu] - \[Lambda]] Gamma[-\[Lambda]])) (Cos[\[CurlyTheta]] - 1)^(-\[Lambda] - 1) ((Cos[\[CurlyTheta]/2]^2)^(\[Mu]/2)/(Sin[\[CurlyTheta]/2]^2)^(\[Mu]/2)) Sum[((Pochhammer[\[Lambda] + 1, k] Pochhammer[\[Lambda] + \[Mu] + 1, k])/ (k! (2 \[Lambda] + k + 1)!)) (Log[(Cos[\[CurlyTheta]] - 1)/2] + PolyGamma[k + 1] - PolyGamma[-k - \[Mu] - \[Lambda]] - PolyGamma[\[Lambda] + k + 1] + PolyGamma[2 \[Lambda] + k + 2]) (2/(1 - Cos[\[CurlyTheta]]))^k, {k, 0, -\[Mu] - \[Lambda] - 1}] + ((2^\[Lambda] Gamma[1/2 + \[Lambda]])/ (Sqrt[Pi] Gamma[1 - \[Mu] + \[Lambda]])) (Cos[\[CurlyTheta]] - 1)^ \[Lambda] ((Cos[\[CurlyTheta]/2]^2)^(\[Mu]/2)/(Sin[\[CurlyTheta]/2]^2)^ (\[Mu]/2)) Sum[((Pochhammer[\[Mu] - \[Lambda], k] Pochhammer[-\[Lambda], k])/(k! Pochhammer[-2 \[Lambda], k])) (2/(1 - Cos[\[CurlyTheta]]))^k, {k, 0, 2 \[Lambda]}] + (((-1)^(2 \[Lambda]) 2^(1 - \[Mu]) Sin[Pi \[Lambda]] Gamma[1 - \[Mu]])/ (Pi Gamma[1 - \[Mu] - \[Lambda]] Gamma[2 - \[Mu] + \[Lambda]])) (Cos[\[CurlyTheta]] - 1)^(\[Mu] - 1) ((Cos[\[CurlyTheta]/2]^2)^(\[Mu]/2)/ (Sin[\[CurlyTheta]/2]^2)^(\[Mu]/2)) HypergeometricPFQ[{1, 1, 1 - \[Mu]}, {1 - \[Mu] - \[Lambda], 2 - \[Mu] + \[Lambda]}, 2/(1 - Cos[\[CurlyTheta]])] /; Element[2 \[Lambda] + 1, Integers] && 2 \[Lambda] + 1 >= 0 && Element[\[Lambda] - \[Mu], Integers] && \[Lambda] + \[Mu] < 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["SphericalHarmonicY", "[", RowBox[List["\[Lambda]", ",", "\[Mu]", ",", "\[CurlyTheta]", ",", "\[CurlyPhi]"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[SqrtBox[FractionBox[RowBox[List[RowBox[List["2", "\[Lambda]"]], "+", "1"]], "\[Pi]"]], FractionBox[SqrtBox[RowBox[List["Gamma", "[", RowBox[List["\[Lambda]", "-", "\[Mu]", "+", "1"]], "]"]]], SqrtBox[RowBox[List["Gamma", "[", RowBox[List["\[Lambda]", "+", "\[Mu]", "+", "1"]], "]"]]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[CurlyPhi]", " ", "\[Mu]"]]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "1"]]], " ", SuperscriptBox["2", "\[Lambda]"]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "\[Mu]"]], "-", "\[Lambda]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["-", "\[Lambda]"]], "]"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]], "-", "1"]], ")"]], RowBox[List[RowBox[List["-", "\[Lambda]"]], "-", "1"]]], " ", FractionBox[SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["Cos", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "2"], ")"]], RowBox[List["\[Mu]", "/", "2"]]], SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["Sin", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "2"], ")"]], RowBox[List["\[Mu]", "/", "2"]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["-", "\[Mu]"]], "-", "\[Lambda]", "-", "1"]]], RowBox[List[FractionBox[RowBox[List[" ", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["\[Lambda]", "+", "1"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["\[Lambda]", "+", "\[Mu]", "+", "1"]], ",", "k"]], "]"]]]]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "\[Lambda]"]], "+", "k", "+", "1"]], ")"]], "!"]]]]], RowBox[List["(", RowBox[List[RowBox[List["Log", "[", FractionBox[RowBox[List[RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]], "-", "1"]], "2"], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["k", "+", "1"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["-", "k"]], "-", "\[Mu]", "-", "\[Lambda]"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["\[Lambda]", "+", "k", "+", "1"]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["2", "\[Lambda]"]], "+", "k", "+", "2"]], "]"]]]], ")"]], SuperscriptBox[RowBox[List["(", FractionBox["2", RowBox[List["1", "-", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]]], ")"]], "k"]]]]]]], "+", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", "\[Lambda]"], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "\[Lambda]"]], "]"]]]], RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "\[Lambda]"]], "]"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]], "-", "1"]], ")"]], "\[Lambda]"], " ", FractionBox[SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["Cos", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "2"], ")"]], RowBox[List["\[Mu]", "/", "2"]]], SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["Sin", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "2"], ")"]], RowBox[List["\[Mu]", "/", "2"]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["2", "\[Lambda]"]]], RowBox[List[FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["\[Mu]", "-", "\[Lambda]"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", "\[Lambda]"]], ",", "k"]], "]"]]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], "\[Lambda]"]], ",", "k"]], "]"]]]]], SuperscriptBox[RowBox[List["(", FractionBox["2", RowBox[List["1", "-", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]]], ")"]], "k"]]]]]]], "+", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["2", "\[Lambda]"]]], " ", SuperscriptBox["2", RowBox[List["1", "-", "\[Mu]"]]], " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Lambda]"]], "]"]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Mu]"]], "]"]]]], RowBox[List["\[Pi]", " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Mu]", "-", "\[Lambda]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["2", "-", "\[Mu]", "+", "\[Lambda]"]], "]"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]], "-", "1"]], ")"]], RowBox[List["\[Mu]", "-", "1"]]], " ", FractionBox[SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["Cos", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "2"], ")"]], RowBox[List["\[Mu]", "/", "2"]]], SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["Sin", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "2"], ")"]], RowBox[List["\[Mu]", "/", "2"]]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", "1", ",", RowBox[List["1", "-", "\[Mu]"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "-", "\[Mu]", "-", "\[Lambda]"]], ",", RowBox[List["2", "-", "\[Mu]", "+", "\[Lambda]"]]]], "}"]], ",", FractionBox["2", RowBox[List["1", "-", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]]]]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List[RowBox[List["2", "\[Lambda]"]], "+", "1"]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List[RowBox[List["2", "\[Lambda]"]], "+", "1"]], "\[GreaterEqual]", "0"]], "\[And]", RowBox[List[RowBox[List["\[Lambda]", "-", "\[Mu]"]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["\[Lambda]", "+", "\[Mu]"]], "<", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mi> Y </mi> <mi> &#955; </mi> <mi> &#956; </mi> </msubsup> <mo> ( </mo> <mrow> <mi> &#977; </mi> <mo> , </mo> <mi> &#966; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <msqrt> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mi> &#960; </mi> </mfrac> </msqrt> <mo> &#8290; </mo> <mfrac> <msqrt> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#955; </mi> <mo> - </mo> <mi> &#956; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </msqrt> <msqrt> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#955; </mi> <mo> + </mo> <mi> &#956; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </msqrt> </mfrac> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#966; </mi> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> </msup> <mo> &#8290; </mo> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mi> &#955; </mi> </msup> </mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#956; </mi> </mrow> <mo> - </mo> <mi> &#955; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mi> &#955; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> &#955; </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mfrac> <msup> <mrow> <msup> <mi> cos </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mi> &#977; </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mi> &#956; </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <msup> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mi> &#977; </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mi> &#956; </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mrow> <mo> - </mo> <mi> &#956; </mi> </mrow> <mo> - </mo> <mi> &#955; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mfrac> <mrow> <mtext> </mtext> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> &#955; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;\[Lambda]&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> &#955; </mi> <mo> + </mo> <mi> &#956; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;\[Lambda]&quot;, &quot;+&quot;, &quot;\[Mu]&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> </mrow> </mrow> <mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> &#955; </mi> <mo> - </mo> <mi> &#956; </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> &#955; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 2 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mi> &#955; </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#955; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#955; </mi> <mo> - </mo> <mi> &#956; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> &#955; </mi> </msup> <mo> &#8290; </mo> <mfrac> <msup> <mrow> <msup> <mi> cos </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mi> &#977; </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mi> &#956; </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <msup> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mi> &#977; </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mi> &#956; </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> - </mo> <mi> &#955; </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;\[Mu]&quot;, &quot;-&quot;, &quot;\[Lambda]&quot;]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> &#955; </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;-&quot;, &quot;\[Lambda]&quot;]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[RowBox[List[&quot;-&quot;, &quot;2&quot;]], &quot; &quot;, &quot;\[Lambda]&quot;]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 2 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#956; </mi> </mrow> </msup> <mo> &#8290; </mo> <mtext> </mtext> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#956; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#955; </mi> <mo> - </mo> <mi> &#956; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#955; </mi> <mo> - </mo> <mi> &#956; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> &#956; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mfrac> <msup> <mrow> <msup> <mi> cos </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mi> &#977; </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mi> &#956; </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <msup> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mi> &#977; </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mi> &#956; </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 1 </mn> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#956; </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> &#955; </mi> </mrow> <mo> - </mo> <mi> &#956; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> &#955; </mi> <mo> - </mo> <mi> &#956; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </mrow> <mo> ; </mo> <mfrac> <mn> 2 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;3&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;2&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;1&quot;, HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;1&quot;, HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;\[Mu]&quot;]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[RowBox[List[&quot;-&quot;, &quot;\[Lambda]&quot;]], &quot;-&quot;, &quot;\[Mu]&quot;, &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;\[Lambda]&quot;, &quot;-&quot;, &quot;\[Mu]&quot;, &quot;+&quot;, &quot;2&quot;]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[FractionBox[&quot;2&quot;, RowBox[List[&quot;1&quot;, &quot;-&quot;, RowBox[List[&quot;cos&quot;, &quot;(&quot;, &quot;\[CurlyTheta]&quot;, &quot;)&quot;]]]]], HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> &#955; </mi> <mo> - </mo> <mi> &#956; </mi> </mrow> <mo> &#8712; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> &#955; </mi> <mo> + </mo> <mi> &#956; </mi> </mrow> <mo> &lt; </mo> <mn> 0 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> SphericalHarmonicY </ci> <ci> &#955; </ci> <ci> &#956; </ci> <ci> &#977; </ci> <ci> &#966; </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#955; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#955; </ci> <ci> &#956; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> &#966; </ci> <ci> &#956; </ci> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#955; </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#955; </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <cos /> <ci> &#977; </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#955; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <power /> <apply> <cos /> <apply> <times /> <ci> &#977; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> &#956; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <power /> <apply> <sin /> <apply> <times /> <ci> &#977; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> &#956; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#955; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> &#955; </ci> <cn type='integer'> 1 </cn> </apply> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> &#955; </ci> <ci> &#956; </ci> <cn type='integer'> 1 </cn> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> k </ci> </apply> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ln /> <apply> <times /> <apply> <plus /> <apply> <cos /> <ci> &#977; </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#955; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> k </ci> <ci> &#955; </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <cos /> <ci> &#977; </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#955; </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#955; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <cos /> <ci> &#977; </ci> </apply> <cn type='integer'> -1 </cn> </apply> <ci> &#955; </ci> </apply> <apply> <times /> <apply> <power /> <apply> <power /> <apply> <cos /> <apply> <times /> <ci> &#977; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> &#956; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <power /> <apply> <sin /> <apply> <times /> <ci> &#977; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> &#956; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> &#956; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#955; </ci> </apply> </apply> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#955; </ci> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <times /> <cn type='integer'> -2 </cn> <ci> &#955; </ci> </apply> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <cos /> <ci> &#977; </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <pi /> <ci> &#955; </ci> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <pi /> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#955; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#955; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <cos /> <ci> &#977; </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> &#956; </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <power /> <apply> <cos /> <apply> <times /> <ci> &#977; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> &#956; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <power /> <apply> <sin /> <apply> <times /> <ci> &#977; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> &#956; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='integer'> 1 </cn> <cn type='integer'> 1 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> </apply> </list> <list> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#955; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> &#955; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <cn type='integer'> 2 </cn> </apply> </list> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <cos /> <ci> &#977; </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> <cn type='integer'> 1 </cn> </apply> <ci> &#8469; </ci> </apply> <apply> <in /> <apply> <plus /> <ci> &#955; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> </apply> <integers /> </apply> <apply> <lt /> <apply> <plus /> <ci> &#955; </ci> <ci> &#956; </ci> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["SphericalHarmonicY", "[", RowBox[List["\[Lambda]_", ",", "\[Mu]_", ",", "\[CurlyTheta]_", ",", "\[CurlyPhi]_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "1"]], "\[Pi]"]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["\[Lambda]", "-", "\[Mu]", "+", "1"]], "]"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[CurlyPhi]", " ", "\[Mu]"]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "1"]]], " ", SuperscriptBox["2", "\[Lambda]"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]], "-", "1"]], ")"]], RowBox[List[RowBox[List["-", "\[Lambda]"]], "-", "1"]]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["Cos", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "2"], ")"]], RowBox[List["\[Mu]", "/", "2"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["-", "\[Mu]"]], "-", "\[Lambda]", "-", "1"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["\[Lambda]", "+", "1"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["\[Lambda]", "+", "\[Mu]", "+", "1"]], ",", "k"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]], "-", "1"]], ")"]]]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["k", "+", "1"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["-", "k"]], "-", "\[Mu]", "-", "\[Lambda]"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["\[Lambda]", "+", "k", "+", "1"]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "k", "+", "2"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox["2", RowBox[List["1", "-", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]]], ")"]], "k"]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "k", "+", "1"]], ")"]], "!"]]]]]]]]], RowBox[List[SqrtBox[RowBox[List["Gamma", "[", RowBox[List["\[Lambda]", "+", "\[Mu]", "+", "1"]], "]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "\[Mu]"]], "-", "\[Lambda]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["-", "\[Lambda]"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["Sin", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "2"], ")"]], RowBox[List["\[Mu]", "/", "2"]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", "\[Lambda]"], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "\[Lambda]"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]], "-", "1"]], ")"]], "\[Lambda]"], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["Cos", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "2"], ")"]], RowBox[List["\[Mu]", "/", "2"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["2", " ", "\[Lambda]"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["\[Mu]", "-", "\[Lambda]"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", "\[Lambda]"]], ",", "k"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox["2", RowBox[List["1", "-", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]]], ")"]], "k"]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[Lambda]"]], ",", "k"]], "]"]]]]]]]]], RowBox[List[RowBox[List["(", RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "\[Lambda]"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["Sin", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "2"], ")"]], RowBox[List["\[Mu]", "/", "2"]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["2", " ", "\[Lambda]"]]], " ", SuperscriptBox["2", RowBox[List["1", "-", "\[Mu]"]]], " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Lambda]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Mu]"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]], "-", "1"]], ")"]], RowBox[List["\[Mu]", "-", "1"]]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["Cos", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "2"], ")"]], RowBox[List["\[Mu]", "/", "2"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", "1", ",", RowBox[List["1", "-", "\[Mu]"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "-", "\[Mu]", "-", "\[Lambda]"]], ",", RowBox[List["2", "-", "\[Mu]", "+", "\[Lambda]"]]]], "}"]], ",", FractionBox["2", RowBox[List["1", "-", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["\[Pi]", " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Mu]", "-", "\[Lambda]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["2", "-", "\[Mu]", "+", "\[Lambda]"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["Sin", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "2"], ")"]], RowBox[List["\[Mu]", "/", "2"]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "1"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "1"]], "\[GreaterEqual]", "0"]], "&&", RowBox[List[RowBox[List["\[Lambda]", "-", "\[Mu]"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["\[Lambda]", "+", "\[Mu]"]], "<", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29