Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
SphericalHarmonicY






Mathematica Notation

Traditional Notation









Hypergeometric Functions > SphericalHarmonicY[lambda,mu,theta,phi] > Summation > Infinite summation





http://functions.wolfram.com/07.37.23.0012.01









  


  










Input Form





Sum[Sqrt[(n - m)!/((2 n + 1) (n + m)!)] LaguerreL[n - m, 2 m, z] SphericalHarmonicY[n, m, \[CurlyTheta], \[CurlyPhi]] w^(n - m), {n, m, Infinity}] == (1/(2^(m + 1) Sqrt[Pi] m!)) (((-Sin[\[CurlyTheta]]) E^(I \[CurlyPhi]))^m/ (1 - 2 w Cos[\[CurlyTheta]] + w^2)^(m + 1/2)) Exp[-((z w (Cos[\[CurlyTheta]] - w))/(1 - 2 w Cos[\[CurlyTheta]] + w^2))] Hypergeometric0F1[m + 1, -((z^2 w^2 Sin[\[CurlyTheta]]^2)/ (4 (1 - 2 w Cos[\[CurlyTheta]] + w^2)^2))] /; Element[m, Integers] && m >= 0 && Element[\[CurlyTheta], Reals] && Element[\[CurlyPhi], Reals] && Abs[w] < 1










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", "m"]], "\[Infinity]"], RowBox[List[SqrtBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["n", "-", "m"]], ")"]], "!"]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "n"]], "+", "1"]], ")"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "+", "m"]], ")"]], "!"]]]]]], " ", RowBox[List["LaguerreL", "[", RowBox[List[RowBox[List["n", "-", "m"]], ",", RowBox[List["2", "m"]], ",", "z"]], "]"]], " ", RowBox[List["SphericalHarmonicY", "[", RowBox[List["n", ",", "m", ",", "\[CurlyTheta]", ",", "\[CurlyPhi]"]], "]"]], " ", SuperscriptBox["w", RowBox[List["n", "-", "m"]]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox["2", RowBox[List["m", "+", "1"]]], SqrtBox["\[Pi]"], " ", RowBox[List["m", "!"]]]]], " ", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Sin", "[", "\[CurlyTheta]", "]"]]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[CurlyPhi]"]]]]], ")"]], "m"], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", "w", " ", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]], "+", SuperscriptBox["w", "2"]]], ")"]], RowBox[List["m", "+", RowBox[List["1", "/", "2"]]]]]], RowBox[List["Exp", "[", RowBox[List["-", FractionBox[RowBox[List["z", " ", "w", " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]], "-", "w"]], ")"]]]], RowBox[List["1", "-", RowBox[List["2", "w", " ", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]], "+", SuperscriptBox["w", "2"]]]]]], "]"]], " ", RowBox[List["Hypergeometric0F1", "[", RowBox[List[RowBox[List["m", "+", "1"]], ",", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["z", "2"], SuperscriptBox["w", "2"], SuperscriptBox[RowBox[List["Sin", "[", "\[CurlyTheta]", "]"]], "2"]]], RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", "w", " ", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]], "+", SuperscriptBox["w", "2"]]], ")"]], "2"]]]]]]]], "]"]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["\[CurlyTheta]", "\[Element]", "Reals"]], "\[And]", RowBox[List["\[CurlyPhi]", "\[Element]", "Reals"]], "\[And]", RowBox[List[RowBox[List["Abs", "[", "w", "]"]], "<", "1"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> n </mi> <mo> = </mo> <mi> m </mi> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <msqrt> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <mrow> <msubsup> <mi> L </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msubsup> <mi> Y </mi> <mi> n </mi> <mi> m </mi> </msubsup> <mo> ( </mo> <mrow> <mi> &#977; </mi> <mo> , </mo> <mi> &#966; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> w </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> </mrow> </msup> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> m </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#966; </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mi> m </mi> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> w </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mi> w </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> m </mi> <mo> + </mo> <mrow> <mn> 1 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </mrow> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mi> exp </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mi> w </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mi> w </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> w </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mi> w </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 0 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mo> &#8202; </mo> <mo> ; </mo> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> w </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> w </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mi> w </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;0&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[&quot;\[Null]&quot;, InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[&quot;m&quot;, &quot;+&quot;, &quot;1&quot;]], Hypergeometric0F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[RowBox[List[SuperscriptBox[&quot;z&quot;, &quot;2&quot;], &quot; &quot;, SuperscriptBox[&quot;w&quot;, &quot;2&quot;], &quot; &quot;, RowBox[List[SuperscriptBox[&quot;sin&quot;, &quot;2&quot;], &quot;(&quot;, &quot;\[CurlyTheta]&quot;, &quot;)&quot;]]]], RowBox[List[&quot;4&quot;, &quot; &quot;, SuperscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;1&quot;, &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot;w&quot;, &quot; &quot;, RowBox[List[&quot;cos&quot;, &quot;(&quot;, &quot;\[CurlyTheta]&quot;, &quot;)&quot;]]]], &quot;+&quot;, SuperscriptBox[&quot;w&quot;, &quot;2&quot;]]], &quot;)&quot;]], &quot;2&quot;]]]]]], Hypergeometric0F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric0F1] </annotation> </semantics> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> m </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mi> &#977; </mi> <mo> &#8712; </mo> <semantics> <mi> &#8477; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalR]&quot;, Function[Reals]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mi> &#966; </mi> <mo> &#8712; </mo> <semantics> <mi> &#8477; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalR]&quot;, Function[Reals]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> w </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &lt; </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <sum /> <bvar> <ci> n </ci> </bvar> <lowlimit> <ci> m </ci> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <ci> m </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> LaguerreL </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <ci> z </ci> </apply> <apply> <ci> SphericalHarmonicY </ci> <ci> n </ci> <ci> m </ci> <ci> &#977; </ci> <ci> &#966; </ci> </apply> <apply> <power /> <ci> w </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <factorial /> <ci> m </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sin /> <ci> &#977; </ci> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> &#966; </ci> </apply> </apply> </apply> <ci> m </ci> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> w </ci> <apply> <cos /> <ci> &#977; </ci> </apply> </apply> </apply> <apply> <power /> <ci> w </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <ci> m </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <exp /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> z </ci> <ci> w </ci> <apply> <plus /> <apply> <cos /> <ci> &#977; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> w </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> w </ci> <apply> <cos /> <ci> &#977; </ci> </apply> </apply> </apply> <apply> <power /> <ci> w </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Hypergeometric0F1 </ci> <apply> <plus /> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> w </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <sin /> <ci> &#977; </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> w </ci> <apply> <cos /> <ci> &#977; </ci> </apply> </apply> </apply> <apply> <power /> <ci> w </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> m </ci> <ci> &#8469; </ci> </apply> <apply> <in /> <ci> &#977; </ci> <reals /> </apply> <apply> <in /> <ci> &#966; </ci> <reals /> </apply> <apply> <lt /> <apply> <abs /> <ci> w </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n_", "=", "m_"]], "\[Infinity]"], RowBox[List[SqrtBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["n_", "-", "m_"]], ")"]], "!"]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "n_"]], "+", "1"]], ")"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n_", "+", "m_"]], ")"]], "!"]]]]]], " ", RowBox[List["LaguerreL", "[", RowBox[List[RowBox[List["n_", "-", "m_"]], ",", RowBox[List["2", " ", "m_"]], ",", "z_"]], "]"]], " ", RowBox[List["SphericalHarmonicY", "[", RowBox[List["n_", ",", "m_", ",", "\[CurlyTheta]_", ",", "\[CurlyPhi]_"]], "]"]], " ", SuperscriptBox["w_", RowBox[List["n_", "-", "m_"]]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Sin", "[", "\[CurlyTheta]", "]"]]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[CurlyPhi]"]]]]], ")"]], "m"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["z", " ", "w", " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]], "-", "w"]], ")"]]]], RowBox[List["1", "-", RowBox[List["2", " ", "w", " ", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]], "+", SuperscriptBox["w", "2"]]]]]]], " ", RowBox[List["Hypergeometric0F1", "[", RowBox[List[RowBox[List["m", "+", "1"]], ",", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["z", "2"], " ", SuperscriptBox["w", "2"], " ", SuperscriptBox[RowBox[List["Sin", "[", "\[CurlyTheta]", "]"]], "2"]]], RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "w", " ", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]], "+", SuperscriptBox["w", "2"]]], ")"]], "2"]]]]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List["m", "+", "1"]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["m", "!"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "w", " ", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]], "+", SuperscriptBox["w", "2"]]], ")"]], RowBox[List["m", "+", FractionBox["1", "2"]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[GreaterEqual]", "0"]], "&&", RowBox[List["\[CurlyTheta]", "\[Element]", "Reals"]], "&&", RowBox[List["\[CurlyPhi]", "\[Element]", "Reals"]], "&&", RowBox[List[RowBox[List["Abs", "[", "w", "]"]], "<", "1"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29