|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.39.06.0003.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ThreeJSymbol[{Subscript[j, 1], Subscript[m, 1]},
{Subscript[j, 2], Subscript[m, 2]}, {Subscript[j, 3], Subscript[m, 3]}] ==
((-1)^(-Subscript[j, 1] + Subscript[j, 2] + Subscript[m, 3])/
Sqrt[2 Subscript[j, 3] + 1]) KroneckerDelta[Subscript[m, 1] +
Subscript[m, 2], -Subscript[m, 3]]
((Sqrt[Binomial[2 Subscript[j, 1], Subscript[j, 1] + Subscript[j, 2] -
Subscript[j, 3]]] Sqrt[Binomial[2 Subscript[j, 2],
Subscript[j, 1] + Subscript[j, 2] - Subscript[j, 3]]])/
(Sqrt[Binomial[Subscript[j, 1] + Subscript[j, 2] + Subscript[j, 3] + 1,
Subscript[j, 1] + Subscript[j, 2] - Subscript[j, 3]]]
Sqrt[Binomial[2 Subscript[j, 1], Subscript[j, 1] - Subscript[m, 1]]]
Sqrt[Binomial[2 Subscript[j, 2], Subscript[j, 2] - Subscript[m, 2]]]
Sqrt[Binomial[2 Subscript[j, 3], Subscript[j, 3] + Subscript[m, 3]]]))
Sum[(-1)^k Binomial[Subscript[j, 1] + Subscript[j, 2] - Subscript[j, 3],
k] Binomial[Subscript[j, 1] - Subscript[j, 2] + Subscript[j, 3],
Subscript[j, 1] - Subscript[m, 1] - k]
Binomial[-Subscript[j, 1] + Subscript[j, 2] + Subscript[j, 3],
Subscript[j, 2] + Subscript[m, 2] - k],
{k, Max[0, Subscript[j, 2] - Subscript[j, 3] - Subscript[m, 1],
Subscript[j, 1] - Subscript[j, 3] + Subscript[m, 2]],
Min[Subscript[j, 1] + Subscript[j, 2] - Subscript[j, 3],
Subscript[j, 1] - Subscript[m, 1], Subscript[j, 2] +
Subscript[m, 2]]}] /; \[ScriptCapitalP]\[ScriptH]\[ScriptY]\[ScriptS]\
\[ScriptI]\[ScriptC]\[ScriptA]\[ScriptL]\[ScriptCapitalQ][
{Subscript[j, 1], Subscript[m, 1]}, {Subscript[j, 2], Subscript[m, 2]},
{Subscript[j, 3], Subscript[m, 3]}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ThreeJSymbol", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["m", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", SubscriptBox["m", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "3"], ",", SubscriptBox["m", "3"]]], "}"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "+", SubscriptBox["j", "2"], "+", SubscriptBox["m", "3"]]]], SqrtBox[RowBox[List[RowBox[List["2", SubscriptBox["j", "3"]]], "+", "1"]]]], RowBox[List["KroneckerDelta", "[", RowBox[List[RowBox[List[SubscriptBox["m", "1"], "+", SubscriptBox["m", "2"]]], ",", RowBox[List["-", SubscriptBox["m", "3"]]]]], "]"]], " ", RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["2", " ", SubscriptBox["j", "1"]]], ",", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", SubscriptBox["j", "3"]]]]], "]"]]], " ", SqrtBox[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["2", " ", SubscriptBox["j", "2"]]], ",", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", SubscriptBox["j", "3"]]]]], "]"]]]]], ")"]], "/", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["Binomial", "[", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"], "+", "1"]], ",", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", SubscriptBox["j", "3"]]]]], "]"]]], " ", SqrtBox[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["2", " ", SubscriptBox["j", "1"]]], ",", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["m", "1"]]]]], "]"]]], " ", SqrtBox[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["2", " ", SubscriptBox["j", "2"]]], ",", RowBox[List[SubscriptBox["j", "2"], "-", SubscriptBox["m", "2"]]]]], "]"]]], " ", SqrtBox[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["2", " ", SubscriptBox["j", "3"]]], ",", RowBox[List[SubscriptBox["j", "3"], "+", SubscriptBox["m", "3"]]]]], "]"]]]]], ")"]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", RowBox[List["Max", "[", RowBox[List["0", ",", RowBox[List[SubscriptBox["j", "2"], "-", SubscriptBox["j", "3"], "-", SubscriptBox["m", "1"]]], ",", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["j", "3"], "+", SubscriptBox["m", "2"]]]]], "]"]]]], RowBox[List["Min", "[", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", SubscriptBox["j", "3"]]], ",", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["m", "1"]]], ",", RowBox[List[SubscriptBox["j", "2"], "+", SubscriptBox["m", "2"]]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], RowBox[List["Binomial", "[", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", SubscriptBox["j", "3"]]], ",", "k"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"]]], ",", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["m", "1"], "-", "k"]]]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "+", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"]]], ",", RowBox[List[SubscriptBox["j", "2"], "+", SubscriptBox["m", "2"], "-", "k"]]]], "]"]]]]]]]]]], "/;", RowBox[List["\[ScriptCapitalP]\[ScriptH]\[ScriptY]\[ScriptS]\[ScriptI]\[ScriptC]\[ScriptA]\[ScriptL]\[ScriptCapitalQ]", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["m", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", SubscriptBox["m", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "3"], ",", SubscriptBox["m", "3"]]], "}"]]]], "]"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <semantics> <mo> ( </mo> <annotation encoding='Mathematica'> TagBox[StyleBox["(", Rule[SpanMaxSize, DirectedInfinity[1]]], ThreeJSymbol] </annotation> </semantics> <mtext>   </mtext> <mtable> <mtr> <mtd> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mtd> <mtd> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mtd> <mtd> <msub> <mi> m </mi> <mn> 3 </mn> </msub> </mtd> </mtr> </mtable> <mtext>   </mtext> <semantics> <mo> ) </mo> <annotation encoding='Mathematica'> TagBox[StyleBox[")", Rule[SpanMaxSize, DirectedInfinity[1]]], ThreeJSymbol] </annotation> </semantics> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 3 </mn> </msub> </mrow> </msup> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> <mo> ⁢ </mo> <msub> <semantics> <mi> δ </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mrow> <mrow> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <msub> <mi> m </mi> <mn> 3 </mn> </msub> </mrow> </mrow> </msub> <mo> ⁢ </mo> <mfrac> <mrow> <msqrt> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["2", " ", SubscriptBox["j", "1"]]], Identity, Rule[Editable, True]]], List[TagBox[RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", SubscriptBox["j", "3"]]], Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> </msqrt> <mo> ⁢ </mo> <msqrt> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["2", " ", SubscriptBox["j", "2"]]], Identity, Rule[Editable, True]]], List[TagBox[RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", SubscriptBox["j", "3"]]], Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> </msqrt> </mrow> <mrow> <msqrt> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"], "+", "1"]], Identity, Rule[Editable, True]]], List[TagBox[RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", SubscriptBox["j", "3"]]], Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> </msqrt> <mo> ⁢ </mo> <msqrt> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["2", " ", SubscriptBox["j", "1"]]], Identity, Rule[Editable, True]]], List[TagBox[RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["m", "1"]]], Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> </msqrt> <mo> ⁢ </mo> <msqrt> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["2", " ", SubscriptBox["j", "2"]]], Identity, Rule[Editable, True]]], List[TagBox[RowBox[List[SubscriptBox["j", "2"], "-", SubscriptBox["m", "2"]]], Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> </msqrt> <mo> ⁢ </mo> <msqrt> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 3 </mn> </msub> </mrow> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["2", " ", SubscriptBox["j", "3"]]], Identity, Rule[Editable, True]]], List[TagBox[RowBox[List[SubscriptBox["j", "3"], "+", SubscriptBox["m", "3"]]], Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mrow> <mi> max </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> min </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> <mo> , </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", SubscriptBox["j", "3"]]], Identity, Rule[Editable, True]]], List[TagBox["k", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mo> - </mo> <mi> k </mi> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"]]], Identity, Rule[Editable, True]]], List[TagBox[RowBox[List[RowBox[List["-", "k"]], "+", SubscriptBox["j", "1"], "-", SubscriptBox["m", "1"]]], Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mo> - </mo> <mi> k </mi> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "+", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"]]], Identity, Rule[Editable, True]]], List[TagBox[RowBox[List[RowBox[List["-", "k"]], "+", SubscriptBox["j", "2"], "+", SubscriptBox["m", "2"]]], Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> 𝒫𝒽𝓎𝓈𝒾𝒸𝒶ℓ𝒬 </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> { </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> , </mo> <msub> <mi> m </mi> <mn> 3 </mn> </msub> </mrow> <mo> } </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> ThreeJSymbol </ci> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> KroneckerDelta </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <ci> Binomial </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Binomial </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <ci> Binomial </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Binomial </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Binomial </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Binomial </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <apply> <max /> <cn type='integer'> 0 </cn> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </lowlimit> <uplimit> <apply> <min /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <ci> Binomial </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <ci> k </ci> </apply> <apply> <ci> Binomial </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> 𝒫𝒽𝓎𝓈𝒾𝒸𝒶ℓ𝒬 </ci> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ThreeJSymbol", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["m_", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", SubscriptBox["m_", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "3"], ",", SubscriptBox["m_", "3"]]], "}"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "+", SubscriptBox["j", "2"], "+", SubscriptBox["mm", "3"]]]], " ", RowBox[List["KroneckerDelta", "[", RowBox[List[RowBox[List[SubscriptBox["mm", "1"], "+", SubscriptBox["mm", "2"]]], ",", RowBox[List["-", SubscriptBox["mm", "3"]]]]], "]"]], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["2", " ", SubscriptBox["j", "1"]]], ",", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", SubscriptBox["j", "3"]]]]], "]"]]], " ", SqrtBox[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["2", " ", SubscriptBox["j", "2"]]], ",", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", SubscriptBox["j", "3"]]]]], "]"]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", RowBox[List["Max", "[", RowBox[List["0", ",", RowBox[List[SubscriptBox["j", "2"], "-", SubscriptBox["j", "3"], "-", SubscriptBox["mm", "1"]]], ",", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["j", "3"], "+", SubscriptBox["mm", "2"]]]]], "]"]]]], RowBox[List["Min", "[", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", SubscriptBox["j", "3"]]], ",", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["mm", "1"]]], ",", RowBox[List[SubscriptBox["j", "2"], "+", SubscriptBox["mm", "2"]]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", SubscriptBox["j", "3"]]], ",", "k"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"]]], ",", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["mm", "1"], "-", "k"]]]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "+", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"]]], ",", RowBox[List[SubscriptBox["j", "2"], "+", SubscriptBox["mm", "2"], "-", "k"]]]], "]"]]]]]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["2", " ", SubscriptBox["j", "3"]]], "+", "1"]]], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["Binomial", "[", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"], "+", "1"]], ",", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", SubscriptBox["j", "3"]]]]], "]"]]], " ", SqrtBox[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["2", " ", SubscriptBox["j", "1"]]], ",", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["mm", "1"]]]]], "]"]]], " ", SqrtBox[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["2", " ", SubscriptBox["j", "2"]]], ",", RowBox[List[SubscriptBox["j", "2"], "-", SubscriptBox["mm", "2"]]]]], "]"]]], " ", SqrtBox[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["2", " ", SubscriptBox["j", "3"]]], ",", RowBox[List[SubscriptBox["j", "3"], "+", SubscriptBox["mm", "3"]]]]], "]"]]]]], ")"]]]]], "/;", RowBox[List["\[ScriptCapitalP]\[ScriptH]\[ScriptY]\[ScriptS]\[ScriptI]\[ScriptC]\[ScriptA]\[ScriptL]\[ScriptCapitalQ]", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["mm", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", SubscriptBox["mm", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "3"], ",", SubscriptBox["mm", "3"]]], "}"]]]], "]"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|