  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/07.44.03.0067.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    WhittakerM[3/4 + n, -(1/4), z] == 
  ((Sqrt[Pi] Erfi[Sqrt[z]])/(E^(z/2) (2 z^(1/4)))) 
    (LaguerreL[n, -(1/2), z] + 2 (n + 1) LaguerreL[n + 1, -(3/2), z]) + 
   (1/2) E^(z/2) z^(1/4) (Sum[(1/(1 + p)) LaguerreL[n - p - 1, 1/2 + p, z] 
       LaguerreL[p, -(1/2) - p, -z], {p, 0, n - 1}] + 
     2 (n + 1) Sum[(1/(1 + p)) LaguerreL[n - p, -(1/2) + p, z] 
        LaguerreL[p, -(1/2) - p, -z], {p, 0, n}]) /; 
 Element[n, Integers] && n >= 0 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["WhittakerM", "[", RowBox[List[RowBox[List[FractionBox["3", "4"], "+", "n"]], ",", RowBox[List["-", FractionBox["1", "4"]]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "z"]], "/", "2"]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", SqrtBox["z"], "]"]], " "]], RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]], RowBox[List["(", RowBox[List[RowBox[List["LaguerreL", "[", RowBox[List["n", ",", RowBox[List["-", FractionBox["1", "2"]]], ",", "z"]], "]"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["n", "+", "1"]], ")"]], " ", RowBox[List["LaguerreL", "[", RowBox[List[RowBox[List["n", "+", "1"]], ",", RowBox[List["-", FractionBox["3", "2"]]], ",", "z"]], "]"]]]]]], ")"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]], RowBox[List["(", " ", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "0"]], RowBox[List["n", "-", "1"]]], RowBox[List[FractionBox["1", RowBox[List["1", "+", "p"]]], RowBox[List["LaguerreL", "[", RowBox[List[RowBox[List["n", "-", "p", "-", "1"]], ",", RowBox[List[FractionBox["1", "2"], "+", "p"]], ",", "z"]], "]"]], " ", RowBox[List["LaguerreL", "[", RowBox[List["p", ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "p"]], ",", RowBox[List["-", "z"]]]], "]"]]]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["n", "+", "1"]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List["1", "+", "p"]]], RowBox[List["LaguerreL", "[", RowBox[List[RowBox[List["n", "-", "p"]], ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "p"]], ",", "z"]], "]"]], " ", RowBox[List["LaguerreL", "[", RowBox[List["p", ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "p"]], ",", RowBox[List["-", "z"]]]], "]"]]]]]]]]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <msub>  <semantics>  <mi> M </mi>  <annotation encoding='Mathematica'> TagBox["M", WhittakerM] </annotation>  </semantics>  <mrow>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mfrac>  <mn> 3 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  </mrow>  </msub>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo>  </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> z </mi>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 4 </mn>  </mroot>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> p </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </munderover>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <msubsup>  <mi> L </mi>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> p </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  </msubsup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msubsup>  <mi> L </mi>  <mi> p </mi>  <mrow>  <mrow>  <mo> - </mo>  <mi> p </mi>  </mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  </msubsup>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> p </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <msubsup>  <mi> L </mi>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> p </mi>  </mrow>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  </msubsup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msubsup>  <mi> L </mi>  <mi> p </mi>  <mrow>  <mrow>  <mo> - </mo>  <mi> p </mi>  </mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  </msubsup>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> + </mo>  <mrow>  <mfrac>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mo> - </mo>  <mfrac>  <mi> z </mi>  <mn> 2 </mn>  </mfrac>  </mrow>  </msup>  <mo> ⁢ </mo>  <msqrt>  <mi> π </mi>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> erfi </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 4 </mn>  </mroot>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msubsup>  <mi> L </mi>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  </msubsup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msubsup>  <mi> L </mi>  <mi> n </mi>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  </msubsup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mi> n </mi>  <mo> ∈ </mo>  <mi> ℕ </mi>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <ci> WhittakerM </ci>  <apply>  <plus />  <ci> n </ci>  <cn type='rational'> 3 <sep /> 4 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <ci> z </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <power />  <exponentiale />  <apply>  <times />  <ci> z </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <apply>  <plus />  <apply>  <sum />  <bvar>  <ci> p </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> -1 </cn>  </apply>  </uplimit>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> LaguerreL </ci>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> p </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <plus />  <ci> p </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <ci> z </ci>  </apply>  <apply>  <ci> LaguerreL </ci>  <ci> p </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> p </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <sum />  <bvar>  <ci> p </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> LaguerreL </ci>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> p </ci>  </apply>  </apply>  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <ci> z </ci>  </apply>  <apply>  <ci> LaguerreL </ci>  <ci> p </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> p </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> z </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <pi />  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <ci> Erfi </ci>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> LaguerreL </ci>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <ci> LaguerreL </ci>  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <in />  <ci> n </ci>  <ci> ℕ </ci>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["WhittakerM", "[", RowBox[List[RowBox[List[FractionBox["3", "4"], "+", "n_"]], ",", RowBox[List["-", FractionBox["1", "4"]]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox["z", "2"]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", SqrtBox["z"], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["LaguerreL", "[", RowBox[List["n", ",", RowBox[List["-", FractionBox["1", "2"]]], ",", "z"]], "]"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["n", "+", "1"]], ")"]], " ", RowBox[List["LaguerreL", "[", RowBox[List[RowBox[List["n", "+", "1"]], ",", RowBox[List["-", FractionBox["3", "2"]]], ",", "z"]], "]"]]]]]], ")"]]]], RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]], "+", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "0"]], RowBox[List["n", "-", "1"]]], FractionBox[RowBox[List[RowBox[List["LaguerreL", "[", RowBox[List[RowBox[List["n", "-", "p", "-", "1"]], ",", RowBox[List[FractionBox["1", "2"], "+", "p"]], ",", "z"]], "]"]], " ", RowBox[List["LaguerreL", "[", RowBox[List["p", ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "p"]], ",", RowBox[List["-", "z"]]]], "]"]]]], RowBox[List["1", "+", "p"]]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["n", "+", "1"]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "0"]], "n"], FractionBox[RowBox[List[RowBox[List["LaguerreL", "[", RowBox[List[RowBox[List["n", "-", "p"]], ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "p"]], ",", "z"]], "]"]], " ", RowBox[List["LaguerreL", "[", RowBox[List["p", ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "p"]], ",", RowBox[List["-", "z"]]]], "]"]]]], RowBox[List["1", "+", "p"]]]]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
  
  
 |  
 
 |