|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.44.06.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
WhittakerM[\[Nu], \[Mu], z] \[Proportional]
(1/Subscript[z, 0])^((1/2 + \[Mu]) Floor[Arg[z - Subscript[z, 0]]/(2 Pi)])
Subscript[z, 0]^((1/2 + \[Mu]) Floor[Arg[z - Subscript[z, 0]]/(2 Pi)])
(WhittakerM[\[Nu], \[Mu], Subscript[z, 0]] +
(((1 + 2 \[Mu] - Subscript[z, 0])/(2 Subscript[z, 0]))
WhittakerM[\[Nu], \[Mu], Subscript[z, 0]] +
((1 + 2 \[Mu] - 2 \[Nu])/(2 (1 + 2 \[Mu]) Sqrt[Subscript[z, 0]]))
WhittakerM[-(1/2) + \[Nu], 1/2 + \[Mu], Subscript[z, 0]])
(z - Subscript[z, 0]) + (1/(16 Subscript[z, 0]^2))
((((1 + 2 \[Mu] - 2 \[Nu]) (3 + 2 \[Mu] - 2 \[Nu]) Subscript[z, 0])/
(1 + 3 \[Mu] + 2 \[Mu]^2)) WhittakerM[-1 + \[Nu], 1 + \[Mu],
Subscript[z, 0]] + ((4 (1 + 2 \[Mu] - 2 \[Nu])
(1 + 2 \[Mu] - Subscript[z, 0]) Sqrt[Subscript[z, 0]])/(1 + 2 \[Mu]))
WhittakerM[-(1/2) + \[Nu], 1/2 + \[Mu], Subscript[z, 0]] +
2 (-1 + 4 \[Mu]^2 - 2 (1 + 2 \[Mu]) Subscript[z, 0] + Subscript[z, 0]^2)
WhittakerM[\[Nu], \[Mu], Subscript[z, 0]]) (z - Subscript[z, 0])^2 +
O[(z - Subscript[z, 0])^3])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["WhittakerM", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["1", SubscriptBox["z", "0"]], ")"]], RowBox[List[RowBox[List["(", RowBox[List[FractionBox["1", "2"], "+", "\[Mu]"]], ")"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["z", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", SubsuperscriptBox["z", "0", RowBox[List[RowBox[List["(", RowBox[List[FractionBox["1", "2"], "+", "\[Mu]"]], ")"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["z", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], RowBox[List["(", RowBox[List[RowBox[List["WhittakerM", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", SubscriptBox["z", "0"]]], "]"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[FractionBox[RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]], "-", SubscriptBox["z", "0"], " "]], RowBox[List["2", " ", SubscriptBox["z", "0"]]]], RowBox[List["WhittakerM", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", SubscriptBox["z", "0"]]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List["1", "+", RowBox[List["2", "\[Mu]"]], "-", RowBox[List["2", "\[Nu]"]]]], RowBox[List["2", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]]]], ")"]], " ", SqrtBox[SubscriptBox["z", "0"]]]]], RowBox[List["WhittakerM", "[", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "\[Nu]"]], ",", RowBox[List[FractionBox["1", "2"], "+", "\[Mu]"]], ",", SubscriptBox["z", "0"]]], "]"]]]]]], ")"]], RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]]]], " ", "+", " ", RowBox[List[FractionBox["1", RowBox[List["16", " ", SubsuperscriptBox["z", "0", "2"]]]], RowBox[List["(", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]], "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "\[Mu]"]], "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], " ", SubscriptBox["z", "0"]]], RowBox[List["1", "+", RowBox[List["3", " ", "\[Mu]"]], "+", RowBox[List["2", " ", SuperscriptBox["\[Mu]", "2"]]]]]], RowBox[List["WhittakerM", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "\[Nu]"]], ",", RowBox[List["1", "+", "\[Mu]"]], ",", SubscriptBox["z", "0"]]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List["4", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]], "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]], "-", SubscriptBox["z", "0"]]], ")"]], " ", SqrtBox[SubscriptBox["z", "0"]], " "]], RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]]]]], RowBox[List["WhittakerM", "[", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "\[Nu]"]], ",", RowBox[List[FractionBox["1", "2"], "+", "\[Mu]"]], ",", SubscriptBox["z", "0"]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["4", " ", SuperscriptBox["\[Mu]", "2"]]], "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]]]], ")"]], " ", SubscriptBox["z", "0"]]], "+", SubsuperscriptBox["z", "0", "2"]]], ")"]], " ", RowBox[List["WhittakerM", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", SubscriptBox["z", "0"]]], "]"]]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "2"]]], "+", RowBox[List["O", "[", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "3"], "]"]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <semantics> <mi> M </mi> <annotation encoding='Mathematica'> TagBox["M", WhittakerM] </annotation> </semantics> <mrow> <mi> ν </mi> <mo> , </mo> <mi> μ </mi> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ∝ </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mfrac> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> μ </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> ⌋ </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msubsup> <mi> z </mi> <mn> 0 </mn> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> μ </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> ⌋ </mo> </mrow> </mrow> </msubsup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <semantics> <mi> M </mi> <annotation encoding='Mathematica'> TagBox["M", WhittakerM] </annotation> </semantics> <mrow> <mi> ν </mi> <mo> , </mo> <mi> μ </mi> </mrow> </msub> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> μ </mi> </mrow> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> M </mi> <annotation encoding='Mathematica'> TagBox["M", WhittakerM] </annotation> </semantics> <mrow> <mi> ν </mi> <mo> , </mo> <mi> μ </mi> </mrow> </msub> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> μ </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> μ </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> M </mi> <annotation encoding='Mathematica'> TagBox["M", WhittakerM] </annotation> </semantics> <mrow> <mrow> <mi> ν </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mi> μ </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> </msub> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <msubsup> <mi> z </mi> <mn> 0 </mn> <mn> 2 </mn> </msubsup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> μ </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> μ </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> μ </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> μ </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> M </mi> <annotation encoding='Mathematica'> TagBox["M", WhittakerM] </annotation> </semantics> <mrow> <mrow> <mi> ν </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> μ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> </msub> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> μ </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msubsup> <mi> z </mi> <mn> 0 </mn> <mn> 2 </mn> </msubsup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> μ </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> M </mi> <annotation encoding='Mathematica'> TagBox["M", WhittakerM] </annotation> </semantics> <mrow> <mi> ν </mi> <mo> , </mo> <mi> μ </mi> </mrow> </msub> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> μ </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> μ </mi> </mrow> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </msqrt> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> μ </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> M </mi> <annotation encoding='Mathematica'> TagBox["M", WhittakerM] </annotation> </semantics> <mrow> <mrow> <mi> ν </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mi> μ </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> </msub> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> O </mi> <mo> ⁡ </mo> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Proportional </ci> <apply> <ci> WhittakerM </ci> <ci> ν </ci> <ci> μ </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> μ </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> μ </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> WhittakerM </ci> <ci> ν </ci> <ci> μ </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> μ </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> WhittakerM </ci> <ci> ν </ci> <ci> μ </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> μ </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> μ </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> WhittakerM </ci> <apply> <plus /> <ci> ν </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <ci> μ </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> μ </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> μ </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> μ </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <ci> μ </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> WhittakerM </ci> <apply> <plus /> <ci> ν </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> μ </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> μ </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> μ </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ci> WhittakerM </ci> <ci> ν </ci> <ci> μ </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> μ </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> μ </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> μ </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> WhittakerM </ci> <apply> <plus /> <ci> ν </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <ci> μ </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> O </ci> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["WhittakerM", "[", RowBox[List["\[Nu]_", ",", "\[Mu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["1", SubscriptBox["zz", "0"]], ")"]], RowBox[List[RowBox[List["(", RowBox[List[FractionBox["1", "2"], "+", "\[Mu]"]], ")"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", SubsuperscriptBox["zz", "0", RowBox[List[RowBox[List["(", RowBox[List[FractionBox["1", "2"], "+", "\[Mu]"]], ")"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["WhittakerM", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", SubscriptBox["zz", "0"]]], "]"]], "+", RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]], "-", SubscriptBox["zz", "0"]]], ")"]], " ", RowBox[List["WhittakerM", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", SubscriptBox["zz", "0"]]], "]"]]]], RowBox[List["2", " ", SubscriptBox["zz", "0"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]], "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["WhittakerM", "[", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "\[Nu]"]], ",", RowBox[List[FractionBox["1", "2"], "+", "\[Mu]"]], ",", SubscriptBox["zz", "0"]]], "]"]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]]]], ")"]], " ", SqrtBox[SubscriptBox["zz", "0"]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]], "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "\[Mu]"]], "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], " ", SubscriptBox["zz", "0"]]], ")"]], " ", RowBox[List["WhittakerM", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "\[Nu]"]], ",", RowBox[List["1", "+", "\[Mu]"]], ",", SubscriptBox["zz", "0"]]], "]"]]]], RowBox[List["1", "+", RowBox[List["3", " ", "\[Mu]"]], "+", RowBox[List["2", " ", SuperscriptBox["\[Mu]", "2"]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["4", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]], "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]], "-", SubscriptBox["zz", "0"]]], ")"]], " ", SqrtBox[SubscriptBox["zz", "0"]]]], ")"]], " ", RowBox[List["WhittakerM", "[", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "\[Nu]"]], ",", RowBox[List[FractionBox["1", "2"], "+", "\[Mu]"]], ",", SubscriptBox["zz", "0"]]], "]"]]]], RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["4", " ", SuperscriptBox["\[Mu]", "2"]]], "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]]]], ")"]], " ", SubscriptBox["zz", "0"]]], "+", SubsuperscriptBox["zz", "0", "2"]]], ")"]], " ", RowBox[List["WhittakerM", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", SubscriptBox["zz", "0"]]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "2"]]], RowBox[List["16", " ", SubsuperscriptBox["zz", "0", "2"]]]], "+", SuperscriptBox[RowBox[List["O", "[", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], "]"]], "3"]]], ")"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|