Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











WhittakerM






Mathematica Notation

Traditional Notation









Hypergeometric Functions > WhittakerM[nu,mu,z] > Series representations > Generalized power series > Expansions at generic point z==z0 > For the function itself





http://functions.wolfram.com/07.44.06.0004.01









  


  










Input Form





WhittakerM[\[Nu], \[Mu], z] == (1/Subscript[z, 0])^((\[Mu] + 1/2) Floor[Arg[z - Subscript[z, 0]]/(2 Pi)]) Subscript[z, 0]^((\[Mu] + 1/2) Floor[Arg[z - Subscript[z, 0]]/(2 Pi)]) Sum[(1/k!) Sum[KroneckerDelta[k, Subscript[k, 1] + Subscript[k, 2] + Subscript[k, 3]] Multinomial[Subscript[k, 1], Subscript[k, 2], Subscript[k, 3]] (-(1/2))^Subscript[k, 1] Subscript[z, 0]^ (-Subscript[k, 2] - Subscript[k, 3]/2) (Pochhammer[3/2 - Subscript[k, 2] + \[Mu], Subscript[k, 2]]/ Pochhammer[1 + 2 \[Mu], Subscript[k, 3]]) Pochhammer[1/2 + \[Mu] - \[Nu], Subscript[k, 3]] WhittakerM[-(Subscript[k, 3]/2) + \[Nu], Subscript[k, 3]/2 + \[Mu], Subscript[z, 0]] (z - Subscript[z, 0])^k, {Subscript[k, 1], 0, k}, {Subscript[k, 2], 0, k}, {Subscript[k, 3], 0, k}], {k, 0, Infinity}]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["WhittakerM", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["1", SubscriptBox["z", "0"]], ")"]], RowBox[List[RowBox[List["(", RowBox[List["\[Mu]", "+", FractionBox["1", "2"]]], ")"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["z", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", SubsuperscriptBox["z", "0", RowBox[List[RowBox[List["(", RowBox[List["\[Mu]", "+", FractionBox["1", "2"]]], ")"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["z", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["k", "!"]], " "]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "1"], "=", "0"]], "k"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "2"], "=", "0"]], "k"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "3"], "=", "0"]], "k"], RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List["k", ",", RowBox[List[SubscriptBox["k", "1"], "+", SubscriptBox["k", "2"], "+", SubscriptBox["k", "3"]]]]], "]"]], RowBox[List["Multinomial", "[", RowBox[List[SubscriptBox["k", "1"], ",", SubscriptBox["k", "2"], ",", SubscriptBox["k", "3"]]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["1", "2"]]], ")"]], SubscriptBox["k", "1"]], " ", SubsuperscriptBox["z", "0", RowBox[List[RowBox[List["-", SubscriptBox["k", "2"]]], "-", FractionBox[SubscriptBox["k", "3"], "2"]]]], " ", FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["3", "2"], "-", SubscriptBox["k", "2"], "+", "\[Mu]"]], ",", SubscriptBox["k", "2"]]], "]"]], " "]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]]]], ",", SubscriptBox["k", "3"]]], "]"]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "\[Mu]", "-", "\[Nu]"]], ",", SubscriptBox["k", "3"]]], "]"]], " ", RowBox[List["WhittakerM", "[", RowBox[List[RowBox[List[RowBox[List["-", FractionBox[SubscriptBox["k", "3"], "2"]]], "+", "\[Nu]"]], ",", RowBox[List[FractionBox[SubscriptBox["k", "3"], "2"], "+", "\[Mu]"]], ",", SubscriptBox["z", "0"]]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "k"], " "]]]]]]]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <semantics> <mi> M </mi> <annotation encoding='Mathematica'> TagBox[&quot;M&quot;, WhittakerM] </annotation> </semantics> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> &#956; </mi> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mfrac> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msubsup> <mi> z </mi> <mn> 0 </mn> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> </msubsup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <msub> <mi> k </mi> <mn> 1 </mn> </msub> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <msub> <mi> k </mi> <mn> 2 </mn> </msub> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <msub> <mi> k </mi> <mn> 3 </mn> </msub> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <mfrac> <mrow> <msub> <semantics> <mi> &#948; </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mrow> <mi> k </mi> <mo> , </mo> <mrow> <msub> <mi> k </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> k </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> k </mi> <mn> 3 </mn> </msub> </mrow> </mrow> </msub> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <msub> <mi> k </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> k </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> k </mi> <mn> 3 </mn> </msub> </mrow> <mo> ; </mo> <msub> <mi> k </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> k </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> k </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, RowBox[List[RowBox[List[RowBox[List[SubscriptBox[&quot;k&quot;, &quot;1&quot;], &quot;+&quot;, SubscriptBox[&quot;k&quot;, &quot;2&quot;], &quot;+&quot;, SubscriptBox[&quot;k&quot;, &quot;3&quot;]]], &quot;;&quot;, SubscriptBox[&quot;k&quot;, &quot;1&quot;]]], &quot;,&quot;, SubscriptBox[&quot;k&quot;, &quot;2&quot;], &quot;,&quot;, SubscriptBox[&quot;k&quot;, &quot;3&quot;]]], &quot;)&quot;]], Multinomial, Rule[Editable, False]] </annotation> </semantics> </mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <msub> <mi> k </mi> <mn> 3 </mn> </msub> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Mu]&quot;]], &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]], SubscriptBox[&quot;k&quot;, &quot;3&quot;]], Pochhammer] </annotation> </semantics> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <msub> <mi> k </mi> <mn> 1 </mn> </msub> </msup> <mo> &#8290; </mo> <msubsup> <mi> z </mi> <mn> 0 </mn> <mrow> <mrow> <mo> - </mo> <msub> <mi> k </mi> <mn> 2 </mn> </msub> </mrow> <mo> - </mo> <mfrac> <msub> <mi> k </mi> <mn> 3 </mn> </msub> <mn> 2 </mn> </mfrac> </mrow> </msubsup> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> - </mo> <msub> <mi> k </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <msub> <mi> k </mi> <mn> 2 </mn> </msub> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;\[Mu]&quot;, &quot;-&quot;, SubscriptBox[&quot;k&quot;, &quot;2&quot;], &quot;+&quot;, FractionBox[&quot;3&quot;, &quot;2&quot;]]], &quot;)&quot;]], SubscriptBox[&quot;k&quot;, &quot;2&quot;]], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> - </mo> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <msub> <mi> k </mi> <mn> 3 </mn> </msub> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;\[Mu]&quot;, &quot;-&quot;, &quot;\[Nu]&quot;, &quot;+&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;]]], &quot;)&quot;]], SubscriptBox[&quot;k&quot;, &quot;3&quot;]], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> M </mi> <annotation encoding='Mathematica'> TagBox[&quot;M&quot;, WhittakerM] </annotation> </semantics> <mrow> <mrow> <mi> &#957; </mi> <mo> - </mo> <mfrac> <msub> <mi> k </mi> <mn> 3 </mn> </msub> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mi> &#956; </mi> <mo> + </mo> <mfrac> <msub> <mi> k </mi> <mn> 3 </mn> </msub> <mn> 2 </mn> </mfrac> </mrow> </mrow> </msub> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> WhittakerM </ci> <ci> &#957; </ci> <ci> &#956; </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> &#956; </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> &#956; </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 3 </cn> </apply> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <sum /> <bvar> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <sum /> <bvar> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> KroneckerDelta </ci> <ci> k </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <ci> Multinomial </ci> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#956; </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> &#956; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> &#956; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <ci> WhittakerM </ci> <apply> <plus /> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> &#956; </ci> <apply> <times /> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["WhittakerM", "[", RowBox[List["\[Nu]_", ",", "\[Mu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["1", SubscriptBox["zz", "0"]], ")"]], RowBox[List[RowBox[List["(", RowBox[List["\[Mu]", "+", FractionBox["1", "2"]]], ")"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", SubsuperscriptBox["zz", "0", RowBox[List[RowBox[List["(", RowBox[List["\[Mu]", "+", FractionBox["1", "2"]]], ")"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "1"], "=", "0"]], "k"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "2"], "=", "0"]], "k"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "3"], "=", "0"]], "k"], FractionBox[RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List["k", ",", RowBox[List[SubscriptBox["k", "1"], "+", SubscriptBox["k", "2"], "+", SubscriptBox["k", "3"]]]]], "]"]], " ", RowBox[List["Multinomial", "[", RowBox[List[SubscriptBox["k", "1"], ",", SubscriptBox["k", "2"], ",", SubscriptBox["k", "3"]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["1", "2"]]], ")"]], SubscriptBox["k", "1"]], " ", SubsuperscriptBox["zz", "0", RowBox[List[RowBox[List["-", SubscriptBox["k", "2"]]], "-", FractionBox[SubscriptBox["k", "3"], "2"]]]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["3", "2"], "-", SubscriptBox["k", "2"], "+", "\[Mu]"]], ",", SubscriptBox["k", "2"]]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "\[Mu]", "-", "\[Nu]"]], ",", SubscriptBox["k", "3"]]], "]"]], " ", RowBox[List["WhittakerM", "[", RowBox[List[RowBox[List[RowBox[List["-", FractionBox[SubscriptBox["k", "3"], "2"]]], "+", "\[Nu]"]], ",", RowBox[List[FractionBox[SubscriptBox["k", "3"], "2"], "+", "\[Mu]"]], ",", SubscriptBox["zz", "0"]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "k"]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]]]], ",", SubscriptBox["k", "3"]]], "]"]]]]]]]]], RowBox[List["k", "!"]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02