|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/04.13.11.0004.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BernoulliB[n] == (n!/2^(n - 1)) SeriesTerm[t/(E^(2 t) - 1), {t, 0, n}] /;
Element[n, Integers] && n >= 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["BernoulliB", "[", "n", "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[" ", RowBox[List["n", "!"]]]], SuperscriptBox["2", RowBox[List["n", "-", "1"]]]], " ", RowBox[List["SeriesTerm", "[", RowBox[List[FractionBox["t", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "t"]]], "-", "1"]]], ",", RowBox[List["{", RowBox[List["t", ",", "0", ",", "n"]], "}"]]]], "]"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox["B", BernoulliB] </annotation> </semantics> <mi> n </mi> </msub> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mtext> </mtext> </mrow> <msup> <mn> 2 </mn> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> [ </mo> <msup> <mi> t </mi> <mi> n </mi> </msup> <mtext> </mtext> <mo> ] </mo> </mrow> <mo> ⁢ </mo> <mfrac> <mi> t </mi> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> t </mi> </mrow> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <semantics> <mi> ℕ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalN]", Function[Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox["B", BernoulliB] </annotation> </semantics> <mi> n </mi> </msub> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mtext> </mtext> </mrow> <msup> <mn> 2 </mn> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> [ </mo> <msup> <mi> t </mi> <mi> n </mi> </msup> <mtext> </mtext> <mo> ] </mo> </mrow> <mo> ⁢ </mo> <mfrac> <mi> t </mi> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> t </mi> </mrow> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <semantics> <mi> ℕ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalN]", Function[Integers]] </annotation> </semantics> </mrow> </mrow> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["BernoulliB", "[", "n_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["n", "!"]], " ", RowBox[List["SeriesTerm", "[", RowBox[List[FractionBox["t", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "t"]]], "-", "1"]]], ",", RowBox[List["{", RowBox[List["t", ",", "0", ",", "n"]], "}"]]]], "]"]]]], SuperscriptBox["2", RowBox[List["n", "-", "1"]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|