|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/04.13.32.0003.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Mod[((1 - p^(n - 1))/n) BernoulliB[n], p^e] ==
(r^n/r^(n - 1)) ((r^EulerPhi[p^e] - 1)/p^e) -
Sum[r^(k (n - 1)) Floor[r^k/p^e], {k, 1, EulerPhi[p^e]}] /;
Element[p, Primes] && p >= 5 && Element[n, Integers] && n > 0 &&
NotElement[(p - 1)/n, Integers] && Element[e, Integers] && e >= 1 &&
Sort[Mod[r^Range[0, p^e - 2], p^e]] == Range[p^e - 1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Mod", "[", RowBox[List[RowBox[List[FractionBox[RowBox[List["1", "-", SuperscriptBox["p", RowBox[List["n", "-", "1"]]]]], "n"], RowBox[List["BernoulliB", "[", "n", "]"]]]], ",", SuperscriptBox["p", "e"]]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[SuperscriptBox["r", "n"], SuperscriptBox["r", RowBox[List["n", "-", "1"]]]], FractionBox[RowBox[List[SuperscriptBox["r", RowBox[List["EulerPhi", "[", SuperscriptBox["p", "e"], "]"]]], "-", "1"]], SuperscriptBox["p", "e"]]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], RowBox[List["EulerPhi", "[", SuperscriptBox["p", "e"], "]"]]], RowBox[List[SuperscriptBox["r", RowBox[List["k", RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]]]]], RowBox[List["\[LeftFloor]", FractionBox[SuperscriptBox["r", "k"], SuperscriptBox["p", "e"]], "\[RightFloor]"]]]]]]]]]], "/;", "\[IndentingNewLine]", RowBox[List[RowBox[List["p", "\[Element]", "Primes"]], "\[And]", RowBox[List["p", "\[GreaterEqual]", "5"]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]], "\[And]", RowBox[List[FractionBox[RowBox[List["p", "-", "1"]], "n"], "\[NotElement]", "Integers"]], "\[And]", RowBox[List["e", "\[Element]", "Integers"]], "\[And]", RowBox[List["e", "\[GreaterEqual]", "1"]], "\[And]", RowBox[List[RowBox[List["Sort", "[", RowBox[List["Mod", "[", RowBox[List[SuperscriptBox["r", RowBox[List["Range", "[", RowBox[List["0", ",", RowBox[List[SuperscriptBox["p", "e"], "-", "2"]]]], "]"]]], ",", SuperscriptBox["p", "e"]]], "]"]], "]"]], "\[Equal]", RowBox[List["Range", "[", RowBox[List[SuperscriptBox["p", "e"], "-", "1"]], "]"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> p </mi> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <mi> B </mi> <mi> n </mi> </msub> </mrow> <mi> n </mi> </mfrac> <mo> ⁢ </mo> <mi> mod </mi> <mo> ⁢ </mo> <msup> <mi> p </mi> <mi> e </mi> </msup> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> FE`Conversion`Private`p </ci> <apply> <plus /> <ci> FE`Conversion`Private`n </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> BernoulliB </ci> <ci> FE`Conversion`Private`n </ci> </apply> <apply> <power /> <ci> FE`Conversion`Private`n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> FE`Conversion`Private`p </ci> <ci> FE`Conversion`Private`e </ci> </apply> </apply> </annotation-xml> </semantics> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <msup> <mi> r </mi> <mi> n </mi> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> r </mi> <mrow> <semantics> <mi> ϕ </mi> <annotation encoding='Mathematica'> TagBox["\[Phi]", EulerPhi] </annotation> </semantics> <mo> ( </mo> <msup> <mi> p </mi> <mi> e </mi> </msup> <mo> ) </mo> </mrow> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msup> <mi> r </mi> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> p </mi> <mi> e </mi> </msup> </mrow> </mfrac> <mo> - </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <semantics> <mi> ϕ </mi> <annotation encoding='Mathematica'> TagBox["\[Phi]", EulerPhi] </annotation> </semantics> <mo> ( </mo> <msup> <mi> p </mi> <mi> e </mi> </msup> <mo> ) </mo> </mrow> </munderover> <mrow> <msup> <mi> r </mi> <mrow> <mi> k </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ⌊ </mo> <mfrac> <msup> <mi> r </mi> <mi> k </mi> </msup> <msup> <mi> p </mi> <mi> e </mi> </msup> </mfrac> <mo> ⌋ </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> p </mi> <mo> ∈ </mo> <semantics> <mi> ℙ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalP]", Function[Primes]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> p </mi> <mo> ≥ </mo> <mn> 5 </mn> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> > </mo> <mn> 0 </mn> </mrow> <mo> ∧ </mo> <mrow> <mfrac> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </mfrac> <mo> ∉ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> e </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> e </mi> <mo> ≥ </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <rem /> <apply> <times /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> FE`Conversion`Private`p </ci> <apply> <plus /> <ci> FE`Conversion`Private`n </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> FE`Conversion`Private`n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> BernoulliB </ci> <ci> FE`Conversion`Private`n </ci> </apply> </apply> <apply> <power /> <ci> FE`Conversion`Private`p </ci> <ci> FE`Conversion`Private`e </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> r </ci> <ci> n </ci> </apply> <apply> <plus /> <apply> <power /> <ci> r </ci> <apply> <ci> EulerPhi </ci> <apply> <power /> <ci> p </ci> <ci> e </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <ci> r </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> p </ci> <ci> e </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <apply> <ci> EulerPhi </ci> <apply> <power /> <ci> p </ci> <ci> e </ci> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <ci> r </ci> <apply> <times /> <ci> k </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <floor /> <apply> <times /> <apply> <power /> <ci> r </ci> <ci> k </ci> </apply> <apply> <power /> <apply> <power /> <ci> p </ci> <ci> e </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> p </ci> <primes /> </apply> <apply> <geq /> <ci> p </ci> <cn type='integer'> 5 </cn> </apply> <apply> <in /> <ci> n </ci> <integers /> </apply> <apply> <gt /> <ci> n </ci> <cn type='integer'> 0 </cn> </apply> <apply> <notin /> <apply> <times /> <apply> <plus /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <integers /> </apply> <apply> <in /> <ci> e </ci> <integers /> </apply> <apply> <geq /> <ci> e </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Mod", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["p_", RowBox[List["n_", "-", "1"]]]]], ")"]], " ", RowBox[List["BernoulliB", "[", "n_", "]"]]]], "n_"], ",", SuperscriptBox["p_", "e_"]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["r", "n"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["r", RowBox[List["EulerPhi", "[", SuperscriptBox["p", "e"], "]"]]], "-", "1"]], ")"]]]], RowBox[List[SuperscriptBox["r", RowBox[List["n", "-", "1"]]], " ", SuperscriptBox["p", "e"]]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], RowBox[List["EulerPhi", "[", SuperscriptBox["p", "e"], "]"]]], RowBox[List[SuperscriptBox["r", RowBox[List["k", " ", RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]]]]], " ", RowBox[List["Floor", "[", FractionBox[SuperscriptBox["r", "k"], SuperscriptBox["p", "e"]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List["p", "\[Element]", "Primes"]], "&&", RowBox[List["p", "\[GreaterEqual]", "5"]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]], "&&", RowBox[List[FractionBox[RowBox[List["p", "-", "1"]], "n"], "\[NotElement]", "Integers"]], "&&", RowBox[List["e", "\[Element]", "Integers"]], "&&", RowBox[List["e", "\[GreaterEqual]", "1"]], "&&", RowBox[List[RowBox[List["Sort", "[", RowBox[List["Mod", "[", RowBox[List[SuperscriptBox["r", RowBox[List["Range", "[", RowBox[List["0", ",", RowBox[List[SuperscriptBox["p", "e"], "-", "2"]]]], "]"]]], ",", SuperscriptBox["p", "e"]]], "]"]], "]"]], "\[Equal]", RowBox[List["Range", "[", RowBox[List[SuperscriptBox["p", "e"], "-", "1"]], "]"]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|