Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
BernoulliB






Mathematica Notation

Traditional Notation









Integer Functions > BernoulliB[n] > Other identities > Congruence properties





http://functions.wolfram.com/04.13.32.0004.01









  


  










Input Form





Mod[((1 - p^(n - 1))/n) BernoulliB[n], p^e] == Mod[((1 - p^(m - 1))/m) BernoulliB[m], p^e] /; Element[p, Primes] && p >= 5 && Element[n, Integers] && n > 0 && Element[m, Integers] && m > 0 && Mod[n, p^e] == Mod[m, p^e]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Mod", "[", RowBox[List[RowBox[List[FractionBox[RowBox[List["1", "-", SuperscriptBox["p", RowBox[List["n", "-", "1"]]]]], "n"], RowBox[List["BernoulliB", "[", "n", "]"]]]], ",", SuperscriptBox["p", "e"]]], "]"]], "\[Equal]", RowBox[List["Mod", "[", RowBox[List[RowBox[List[FractionBox[RowBox[List["1", "-", SuperscriptBox["p", RowBox[List["m", "-", "1"]]]]], "m"], RowBox[List["BernoulliB", "[", "m", "]"]]]], ",", SuperscriptBox["p", "e"]]], "]"]]]], "/;", "\[IndentingNewLine]", RowBox[List[RowBox[List["p", "\[Element]", "Primes"]], "\[And]", RowBox[List["p", "\[GreaterEqual]", "5"]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]], "\[And]", RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", ">", "0"]], "\[And]", RowBox[List[RowBox[List["Mod", "[", RowBox[List["n", ",", SuperscriptBox["p", "e"]]], "]"]], "\[Equal]", RowBox[List["Mod", "[", RowBox[List["m", ",", SuperscriptBox["p", "e"]]], "]"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> p </mi> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <mi> B </mi> <mi> n </mi> </msub> </mrow> <mi> n </mi> </mfrac> <mo> &#8290; </mo> <mi> mod </mi> <mo> &#8290; </mo> <msup> <mi> p </mi> <mi> e </mi> </msup> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> FE`Conversion`Private`p </ci> <apply> <plus /> <ci> FE`Conversion`Private`n </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> BernoulliB </ci> <ci> FE`Conversion`Private`n </ci> </apply> <apply> <power /> <ci> FE`Conversion`Private`n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> FE`Conversion`Private`p </ci> <ci> FE`Conversion`Private`e </ci> </apply> </apply> </annotation-xml> </semantics> <mo> &#10869; </mo> <semantics> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> p </mi> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <mi> B </mi> <mi> m </mi> </msub> </mrow> <mi> m </mi> </mfrac> <mo> &#8290; </mo> <mi> mod </mi> <mo> &#8290; </mo> <msup> <mi> p </mi> <mi> e </mi> </msup> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> FE`Conversion`Private`p </ci> <apply> <plus /> <ci> FE`Conversion`Private`m </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> BernoulliB </ci> <ci> FE`Conversion`Private`m </ci> </apply> <apply> <power /> <ci> FE`Conversion`Private`m </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> FE`Conversion`Private`p </ci> <ci> FE`Conversion`Private`e </ci> </apply> </apply> </annotation-xml> </semantics> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> p </mi> <mo> &#8712; </mo> <semantics> <mi> &#8473; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalP]&quot;, Function[Primes]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mi> p </mi> <mo> &#8805; </mo> <mn> 5 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mi> n </mi> <mo> &gt; </mo> <mn> 0 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mi> m </mi> <mo> &#8712; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mi> m </mi> <mo> &gt; </mo> <mn> 0 </mn> </mrow> <mo> &#8743; </mo> <mrow> <semantics> <mrow> <mi> n </mi> <mo> &#8290; </mo> <mi> mod </mi> <mo> &#8290; </mo> <msup> <mi> p </mi> <mi> e </mi> </msup> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> FE`Conversion`Private`n </ci> <apply> <power /> <ci> FE`Conversion`Private`p </ci> <ci> FE`Conversion`Private`e </ci> </apply> </apply> </annotation-xml> </semantics> <mo> &#10869; </mo> <semantics> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mi> mod </mi> <mo> &#8290; </mo> <msup> <mi> p </mi> <mi> e </mi> </msup> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> FE`Conversion`Private`m </ci> <apply> <power /> <ci> FE`Conversion`Private`p </ci> <ci> FE`Conversion`Private`e </ci> </apply> </apply> </annotation-xml> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <rem /> <apply> <times /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> FE`Conversion`Private`p </ci> <apply> <plus /> <ci> FE`Conversion`Private`n </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> FE`Conversion`Private`n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> BernoulliB </ci> <ci> FE`Conversion`Private`n </ci> </apply> </apply> <apply> <power /> <ci> FE`Conversion`Private`p </ci> <ci> FE`Conversion`Private`e </ci> </apply> </apply> <apply> <rem /> <apply> <times /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> FE`Conversion`Private`p </ci> <apply> <plus /> <ci> FE`Conversion`Private`m </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> FE`Conversion`Private`m </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> BernoulliB </ci> <ci> FE`Conversion`Private`m </ci> </apply> </apply> <apply> <power /> <ci> FE`Conversion`Private`p </ci> <ci> FE`Conversion`Private`e </ci> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> p </ci> <primes /> </apply> <apply> <geq /> <ci> p </ci> <cn type='integer'> 5 </cn> </apply> <apply> <in /> <ci> n </ci> <integers /> </apply> <apply> <gt /> <ci> n </ci> <cn type='integer'> 0 </cn> </apply> <apply> <in /> <ci> m </ci> <integers /> </apply> <apply> <gt /> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <apply> <eq /> <apply> <rem /> <ci> FE`Conversion`Private`n </ci> <apply> <power /> <ci> FE`Conversion`Private`p </ci> <ci> FE`Conversion`Private`e </ci> </apply> </apply> <apply> <rem /> <ci> FE`Conversion`Private`m </ci> <apply> <power /> <ci> FE`Conversion`Private`p </ci> <ci> FE`Conversion`Private`e </ci> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Mod", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["p_", RowBox[List["n_", "-", "1"]]]]], ")"]], " ", RowBox[List["BernoulliB", "[", "n_", "]"]]]], "n_"], ",", SuperscriptBox["p_", "e_"]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["Mod", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["p", RowBox[List["m", "-", "1"]]]]], ")"]], " ", RowBox[List["BernoulliB", "[", "m", "]"]]]], "m"], ",", SuperscriptBox["p", "e"]]], "]"]], "/;", RowBox[List[RowBox[List["p", "\[Element]", "Primes"]], "&&", RowBox[List["p", "\[GreaterEqual]", "5"]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]], "&&", RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", ">", "0"]], "&&", RowBox[List[RowBox[List["Mod", "[", RowBox[List["n", ",", SuperscriptBox["p", "e"]]], "]"]], "\[Equal]", RowBox[List["Mod", "[", RowBox[List["m", ",", SuperscriptBox["p", "e"]]], "]"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18