|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/04.22.06.0001.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LucasL[\[Nu]] \[Proportional] LucasL[Subscript[\[Nu], 0]] +
(GoldenRatio^Subscript[\[Nu], 0] ArcCsch[2] +
((1/2) (E^(I Pi Subscript[\[Nu], 0]) (I Pi - ArcCsch[2]) -
(I Pi + ArcCsch[2])/E^(I Pi Subscript[\[Nu], 0])))/
GoldenRatio^Subscript[\[Nu], 0]) (\[Nu] - Subscript[\[Nu], 0]) +
(1/2) (GoldenRatio^Subscript[\[Nu], 0] ArcCsch[2]^2 +
((1/2) (E^(I Pi Subscript[\[Nu], 0]) (I Pi - ArcCsch[2])^2 +
(I Pi + ArcCsch[2])^2/E^(I Pi Subscript[\[Nu], 0])))/
GoldenRatio^Subscript[\[Nu], 0]) (\[Nu] - Subscript[\[Nu], 0])^2 +
\[Ellipsis] /; (\[Nu] -> Subscript[\[Nu], 0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["LucasL", "[", "\[Nu]", "]"]], "\[Proportional]", RowBox[List[RowBox[List["LucasL", "[", SubscriptBox["\[Nu]", "0"], "]"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["GoldenRatio", SubscriptBox["\[Nu]", "0"]], " ", RowBox[List["ArcCsch", "[", "2", "]"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["GoldenRatio", RowBox[List["-", SubscriptBox["\[Nu]", "0"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", SubscriptBox["\[Nu]", "0"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "-", RowBox[List["ArcCsch", "[", "2", "]"]]]], ")"]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "\[Pi]", " ", SubscriptBox["\[Nu]", "0"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "+", RowBox[List["ArcCsch", "[", "2", "]"]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["\[Nu]", "-", SubscriptBox["\[Nu]", "0"]]], ")"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["GoldenRatio", SubscriptBox["\[Nu]", "0"]], " ", SuperscriptBox[RowBox[List["ArcCsch", "[", "2", "]"]], "2"]]], "+", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["GoldenRatio", RowBox[List["-", SubscriptBox["\[Nu]", "0"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", SubscriptBox["\[Nu]", "0"]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "-", RowBox[List["ArcCsch", "[", "2", "]"]]]], ")"]], "2"]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "\[Pi]", " ", SubscriptBox["\[Nu]", "0"]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "+", RowBox[List["ArcCsch", "[", "2", "]"]]]], ")"]], "2"]]]]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[Nu]", "-", SubscriptBox["\[Nu]", "0"]]], ")"]], "2"]]], "+", "\[Ellipsis]"]]]], "/;", RowBox[List["(", RowBox[List["\[Nu]", "\[Rule]", SubscriptBox["\[Nu]", "0"]]], ")"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <semantics> <mi> L </mi> <annotation encoding='Mathematica'> TagBox["L", LucasL] </annotation> </semantics> <mi> ν </mi> </msub> <mo> ∝ </mo> <mrow> <msub> <semantics> <mi> L </mi> <annotation encoding='Mathematica'> TagBox["L", LucasL] </annotation> </semantics> <msub> <mi> ν </mi> <mn> 0 </mn> </msub> </msub> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <semantics> <mi> ϕ </mi> <annotation encoding='Mathematica'> TagBox["\[Phi]", Function[List[], GoldenRatio]] </annotation> </semantics> <msub> <mi> ν </mi> <mn> 0 </mn> </msub> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <msup> <semantics> <mi> ϕ </mi> <annotation encoding='Mathematica'> TagBox["\[Phi]", Function[List[], GoldenRatio]] </annotation> </semantics> <mrow> <mo> - </mo> <msub> <mi> ν </mi> <mn> 0 </mn> </msub> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <msub> <mi> ν </mi> <mn> 0 </mn> </msub> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> - </mo> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <msub> <mi> ν </mi> <mn> 0 </mn> </msub> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> - </mo> <msub> <mi> ν </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <semantics> <mi> ϕ </mi> <annotation encoding='Mathematica'> TagBox["\[Phi]", Function[List[], GoldenRatio]] </annotation> </semantics> <msub> <mi> ν </mi> <mn> 0 </mn> </msub> </msup> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <msup> <semantics> <mi> ϕ </mi> <annotation encoding='Mathematica'> TagBox["\[Phi]", Function[List[], GoldenRatio]] </annotation> </semantics> <mrow> <mo> - </mo> <msub> <mi> ν </mi> <mn> 0 </mn> </msub> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <msub> <mi> ν </mi> <mn> 0 </mn> </msub> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> - </mo> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <msub> <mi> ν </mi> <mn> 0 </mn> </msub> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> - </mo> <msub> <mi> ν </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mo> … </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mi> ν </mi> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <msub> <mi> ν </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> LucasL </ci> <ci> ν </ci> </apply> <apply> <plus /> <apply> <ci> LucasL </ci> <apply> <ci> Subscript </ci> <ci> ν </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> GoldenRatio </ci> <apply> <ci> Subscript </ci> <ci> ν </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <arccsch /> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <ci> GoldenRatio </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> ν </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <pi /> <apply> <ci> Subscript </ci> <ci> ν </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <pi /> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <arccsch /> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <pi /> <apply> <ci> Subscript </ci> <ci> ν </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <pi /> </apply> <apply> <arccsch /> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> ν </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> ν </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> GoldenRatio </ci> <apply> <ci> Subscript </ci> <ci> ν </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <power /> <apply> <arccsch /> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <ci> GoldenRatio </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> ν </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <pi /> <apply> <ci> Subscript </ci> <ci> ν </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <pi /> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <arccsch /> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <pi /> <apply> <ci> Subscript </ci> <ci> ν </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <pi /> </apply> <apply> <arccsch /> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> ν </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> ν </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <ci> … </ci> </apply> </apply> <apply> <ci> Rule </ci> <ci> ν </ci> <apply> <ci> Subscript </ci> <ci> ν </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LucasL", "[", "\[Nu]_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["LucasL", "[", SubscriptBox["\[Nu]\[Nu]", "0"], "]"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["GoldenRatio", SubscriptBox["\[Nu]\[Nu]", "0"]], " ", RowBox[List["ArcCsch", "[", "2", "]"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["GoldenRatio", RowBox[List["-", SubscriptBox["\[Nu]\[Nu]", "0"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", SubscriptBox["\[Nu]\[Nu]", "0"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "-", RowBox[List["ArcCsch", "[", "2", "]"]]]], ")"]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "\[Pi]", " ", SubscriptBox["\[Nu]\[Nu]", "0"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "+", RowBox[List["ArcCsch", "[", "2", "]"]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["\[Nu]", "-", SubscriptBox["\[Nu]\[Nu]", "0"]]], ")"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["GoldenRatio", SubscriptBox["\[Nu]\[Nu]", "0"]], " ", SuperscriptBox[RowBox[List["ArcCsch", "[", "2", "]"]], "2"]]], "+", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["GoldenRatio", RowBox[List["-", SubscriptBox["\[Nu]\[Nu]", "0"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", SubscriptBox["\[Nu]\[Nu]", "0"]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "-", RowBox[List["ArcCsch", "[", "2", "]"]]]], ")"]], "2"]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "\[Pi]", " ", SubscriptBox["\[Nu]\[Nu]", "0"]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "+", RowBox[List["ArcCsch", "[", "2", "]"]]]], ")"]], "2"]]]]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[Nu]", "-", SubscriptBox["\[Nu]\[Nu]", "0"]]], ")"]], "2"]]], "+", "\[Ellipsis]"]], "/;", RowBox[List["(", RowBox[List["\[Nu]", "\[Rule]", SubscriptBox["\[Nu]\[Nu]", "0"]]], ")"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|