Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











LucasL






Mathematica Notation

Traditional Notation









Integer Functions > LucasL[nu] > Complex characteristics > Signum value





http://functions.wolfram.com/04.22.19.0008.01









  


  










Input Form





Sign[LucasL[x + I y]] == GoldenRatio^x Cos[y Log[GoldenRatio]] + (2^(1/2 - x) (4^x Cos[Pi (x + I y)] (Cos[y ArcCsch[2]] - I Sin[y ArcCsch[2]]) + I (1 + Sqrt[5])^(2 x) Sin[y ArcCsch[2]]))/ (1 + Sqrt[5])^x/ Sqrt[(4^x Cos[2 Pi x] + 2 ((3 + Sqrt[5])^(2 x) + ((1 + Sqrt[5])^(2 (x - I y)) ((1 + Sqrt[5])^(4 I y) Cos[Pi (x - I y)] + 2^(4 I y) Cos[Pi (x + I y)]))/2^(2 I y)) + 4^x Cosh[2 Pi y])/(1 + Sqrt[5])^(2 x)]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Sign", "[", RowBox[List["LucasL", "[", RowBox[List["x", "+", RowBox[List["\[ImaginaryI]", " ", "y"]]]], "]"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[SuperscriptBox["GoldenRatio", "x"], " ", RowBox[List["Cos", "[", RowBox[List["y", " ", RowBox[List["Log", "[", "GoldenRatio", "]"]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[FractionBox["1", "2"], "-", "x"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox["5"]]], ")"]], RowBox[List["-", "x"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["4", "x"], " ", RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["x", "+", RowBox[List["\[ImaginaryI]", " ", "y"]]]], ")"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", RowBox[List["y", " ", RowBox[List["ArcCsch", "[", "2", "]"]]]], "]"]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Sin", "[", RowBox[List["y", " ", RowBox[List["ArcCsch", "[", "2", "]"]]]], "]"]]]]]], ")"]]]], "+", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox["5"]]], ")"]], RowBox[List["2", " ", "x"]]], " ", RowBox[List["Sin", "[", RowBox[List["y", " ", RowBox[List["ArcCsch", "[", "2", "]"]]]], "]"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox["5"]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", "x"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["4", "x"], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "\[Pi]", " ", "x"]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["3", "+", SqrtBox["5"]]], ")"]], RowBox[List["2", " ", "x"]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "y"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox["5"]]], ")"]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["x", "-", RowBox[List["\[ImaginaryI]", " ", "y"]]]], ")"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox["5"]]], ")"]], RowBox[List["4", " ", "\[ImaginaryI]", " ", "y"]]], " ", RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["x", "-", RowBox[List["\[ImaginaryI]", " ", "y"]]]], ")"]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List["4", " ", "\[ImaginaryI]", " ", "y"]]], " ", RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["x", "+", RowBox[List["\[ImaginaryI]", " ", "y"]]]], ")"]]]], "]"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["4", "x"], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "\[Pi]", " ", "y"]], "]"]]]]]], ")"]]]], ")"]]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> sgn </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <semantics> <mi> L </mi> <annotation encoding='Mathematica'> TagBox[&quot;L&quot;, LucasL] </annotation> </semantics> <mrow> <mi> x </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> </mrow> </msub> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <msup> <semantics> <mi> &#981; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Phi]&quot;, Function[List[], GoldenRatio]] </annotation> </semantics> <mi> x </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> y </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <semantics> <mi> &#981; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Phi]&quot;, Function[List[], GoldenRatio]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> x </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> x </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> y </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> x </mi> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mn> 4 </mn> <mi> x </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> x </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> y </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> y </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mo> &#8730; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> x </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mn> 4 </mn> <mi> x </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> x </mi> </mrow> </msup> <mo> + </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> x </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> x </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> x </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mn> 4 </mn> <mi> x </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Sign </ci> <apply> <ci> LucasL </ci> <apply> <plus /> <ci> x </ci> <apply> <times /> <imaginaryi /> <ci> y </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> GoldenRatio </ci> <ci> x </ci> </apply> <apply> <cos /> <apply> <times /> <ci> y </ci> <apply> <ln /> <ci> GoldenRatio </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <sin /> <apply> <times /> <ci> y </ci> <apply> <arccsch /> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 4 </cn> <ci> x </ci> </apply> <apply> <cos /> <apply> <times /> <pi /> <apply> <plus /> <ci> x </ci> <apply> <times /> <imaginaryi /> <ci> y </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <cos /> <apply> <times /> <ci> y </ci> <apply> <arccsch /> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <sin /> <apply> <times /> <ci> y </ci> <apply> <arccsch /> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <root /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -2 </cn> <ci> x </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 4 </cn> <ci> x </ci> </apply> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <ci> x </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 3 </cn> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -2 </cn> <imaginaryi /> <ci> y </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> x </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> y </ci> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <cos /> <apply> <times /> <pi /> <apply> <plus /> <ci> x </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> y </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <imaginaryi /> <ci> y </ci> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <imaginaryi /> <ci> y </ci> </apply> </apply> <apply> <cos /> <apply> <times /> <pi /> <apply> <plus /> <ci> x </ci> <apply> <times /> <imaginaryi /> <ci> y </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 4 </cn> <ci> x </ci> </apply> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <ci> y </ci> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Sign", "[", RowBox[List["LucasL", "[", RowBox[List["x_", "+", RowBox[List["\[ImaginaryI]", " ", "y_"]]]], "]"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox["GoldenRatio", "x"], " ", RowBox[List["Cos", "[", RowBox[List["y", " ", RowBox[List["Log", "[", "GoldenRatio", "]"]]]], "]"]]]], "+", FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[FractionBox["1", "2"], "-", "x"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox["5"]]], ")"]], RowBox[List["-", "x"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["4", "x"], " ", RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["x", "+", RowBox[List["\[ImaginaryI]", " ", "y"]]]], ")"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", RowBox[List["y", " ", RowBox[List["ArcCsch", "[", "2", "]"]]]], "]"]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Sin", "[", RowBox[List["y", " ", RowBox[List["ArcCsch", "[", "2", "]"]]]], "]"]]]]]], ")"]]]], "+", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox["5"]]], ")"]], RowBox[List["2", " ", "x"]]], " ", RowBox[List["Sin", "[", RowBox[List["y", " ", RowBox[List["ArcCsch", "[", "2", "]"]]]], "]"]]]]]], ")"]]]], SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox["5"]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", "x"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["4", "x"], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "\[Pi]", " ", "x"]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["3", "+", SqrtBox["5"]]], ")"]], RowBox[List["2", " ", "x"]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "y"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox["5"]]], ")"]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["x", "-", RowBox[List["\[ImaginaryI]", " ", "y"]]]], ")"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox["5"]]], ")"]], RowBox[List["4", " ", "\[ImaginaryI]", " ", "y"]]], " ", RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["x", "-", RowBox[List["\[ImaginaryI]", " ", "y"]]]], ")"]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List["4", " ", "\[ImaginaryI]", " ", "y"]]], " ", RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["x", "+", RowBox[List["\[ImaginaryI]", " ", "y"]]]], ")"]]]], "]"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["4", "x"], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "\[Pi]", " ", "y"]], "]"]]]]]], ")"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02