Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











LucasL






Mathematica Notation

Traditional Notation









Integer Functions > LucasL[nu] > Introduction to the Fibonacci and Lucas numbers





The best-known properties and formulas of the Fibonacci and Lucas numbers

Simple values at zero and infinity

The Fibonacci and Lucas numbers and have the following values at zero and infinity:

Specific values for specialized variables

The Fibonacci and Lucas numbers and with integer argument can be represented by the following formulas:

For the cases of integer arguments , the values of the Fibonacci and Lucas numbers and can be described by the following table:

Analyticity

The Fibonacci and Lucas numbers and are entire analytical functions of that are defined over the whole complex -plane:

Periodicity

The Fibonacci and Lucas numbers and do not have periodicity.

Parity and symmetry

The Fibonacci and Lucas numbers and generically do not have parity, but they have mirror symmetry:

Poles and essential singularities

The Fibonacci and Lucas numbers and have only the singular point . It is an essential singular point.

Branch points and branch cuts

The Fibonacci and Lucas numbers and do not have branch points and branch cuts over the complex -plane.

Series representations

The Fibonacci and Lucas numbers and have the following series expansions (which converge in the whole complex -plane):

Asymptotic series expansions

The asymptotic behavior of the Fibonacci and Lucas numbers and is described by the following formulas:

Other series representations

The Fibonacci and Lucas numbers and for integer nonnegative can be represented through the following sums involving binomials:

Integral representations

The Fibonacci and Lucas numbers and have the following integral representations on the real axis:

Generating functions

The Fibonacci and Lucas numbers and can be represented as the coefficients of the series of the corresponding generating functions:

Transformations: Addition formulas

The Fibonacci and Lucas numbers and satisfy numerous addition formulas:

Transformations: Multiple arguments

The Fibonacci and Lucas numbers and satisfy numerous identities, for example the following multiple argument formulas:

Transformations: Products and powers of the direct function

The Fibonacci and Lucas numbers and satisfy numerous identities for products and powers:

Identities

The Fibonacci and Lucas numbers and are solutions of the following simple difference equation with constant coefficients:

The Fibonacci and Lucas numbers and satisfy numerous recurrence identities:

Other identities for Fibonacci and Lucas numbers and are just functional identities:

Complex characteristics

The Fibonacci and Lucas numbers and have the following complex characteristics for complex arguments:

Differentiation

The Fibonacci and Lucas numbers and have the following representations for derivatives of the first and orders or the arbitrary fractional order :

Differential equations

The Fibonacci and Lucas numbers and satisfy the following third-order linear differential equation:

where , , and are arbitrary constants.

Indefinite integration

Some indefinite integrals for Fibonacci and Lucas numbers and can be evaluated as follows:

Laplace transforms

Laplace transforms of the Fibonacci and Lucas numbers and can be represented by the following formulas:

Summation

There exist many formulas for finite summation of Fibonacci and Lucas numbers, for example:

Here are some corresponding infinite sums:

And here are some multiple sums:

Limit operation

Some formulas including limit operations with Fibonacci and Lucas numbers and take on symmetrical forms:

Other identities

The Fibonacci numbers can be obtained from the evaluation of some determinates, for example: