|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/04.16.06.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PartitionsP[n] \[Proportional] (1/(4 n Sqrt[3])) E^(Sqrt[2/3] Sqrt[n] Pi)
(1 + O[1/n]) /; (n -> Infinity)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["PartitionsP", "[", "n", "]"]], "\[Proportional]", RowBox[List[FractionBox["1", RowBox[List["4", "n", SqrtBox["3"]]]], SuperscriptBox["\[ExponentialE]", RowBox[List[SqrtBox[FractionBox["2", "3"]], " ", SqrtBox["n"], " ", "\[Pi]"]]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", "n"], "]"]]]], ")"]]]]]], "/;", RowBox[List["(", RowBox[List["n", "\[Rule]", "\[Infinity]"]], ")"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <semantics> <mi> p </mi> <annotation encoding='Mathematica'> TagBox["p", PartitionsP] </annotation> </semantics> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> <mo> ∝ </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> n </mi> <mo> ⁢ </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mi> exp </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msqrt> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> n </mi> </msqrt> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mi> n </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mi> ∞ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> PartitionsP </ci> <ci> n </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> n </ci> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <exp /> <apply> <times /> <apply> <power /> <cn type='rational'> 2 <sep /> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> n </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <pi /> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> O </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Rule </ci> <ci> n </ci> <infinity /> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["PartitionsP", "[", "n_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[SqrtBox[FractionBox["2", "3"]], " ", SqrtBox["n"], " ", "\[Pi]"]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", "n"], "]"]]]], ")"]]]], RowBox[List["4", " ", "n", " ", SqrtBox["3"]]]], "/;", RowBox[List["(", RowBox[List["n", "\[Rule]", "\[Infinity]"]], ")"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|