Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











SpheroidalPS






Mathematica Notation

Traditional Notation









Mathieu and Spheroidal Functions > SpheroidalPS[nu,mu,gamma,z] > Series representations > Generalized power series > Expansions at gamma==0





http://functions.wolfram.com/11.08.06.0001.01









  


  










Input Form





SpheroidalPS[\[Nu], \[Mu], \[Gamma], z] \[Proportional] LegendreP[\[Nu], \[Mu], 2, z] + (1/(2 (1 + 2 \[Nu]))) (-(((-1 + \[Mu] + \[Nu]) (\[Mu] + \[Nu]) LegendreP[-2 + \[Nu], \[Mu], 2, z])/(1 - 2 \[Nu])^2) + ((1 - \[Mu] + \[Nu]) (2 - \[Mu] + \[Nu]) LegendreP[2 + \[Nu], \[Mu], 2, z])/(3 + 2 \[Nu])^2) \[Gamma]^2 + (1/8) (((-3 + \[Mu] + \[Nu]) (-2 + \[Mu] + \[Nu]) (-1 + \[Mu] + \[Nu]) (\[Mu] + \[Nu]) LegendreP[-4 + \[Nu], \[Mu], 2, z])/ ((-5 - 8 \[Nu] + 4 \[Nu]^2) (3 - 8 \[Nu] + 4 \[Nu]^2)^2) + (8 (-1 + 4 \[Mu]^2) (\[Mu]^2 + (-1 + \[Nu]) \[Nu] + \[Mu] (-1 + 2 \[Nu])) LegendreP[-2 + \[Nu], \[Mu], 2, z])/ ((1 - 2 \[Nu])^4 (-15 - 34 \[Nu] - 4 \[Nu]^2 + 8 \[Nu]^3)) - (1/(1 + 2 \[Nu])) ((((\[Mu] - \[Nu]) (1 + \[Mu] - \[Nu]) (-1 + \[Mu] + \[Nu]) (\[Mu] + \[Nu]))/((1 - 2 \[Nu])^4 (-3 + 2 \[Nu])) + ((1 - \[Mu] + \[Nu]) (2 - \[Mu] + \[Nu]) (1 + \[Mu] + \[Nu]) (2 + \[Mu] + \[Nu]))/((3 + 2 \[Nu])^4 (5 + 2 \[Nu]))) LegendreP[\[Nu], \[Mu], 2, z]) - (8 (-1 + 4 \[Mu]^2) (2 + \[Mu]^2 + 3 \[Nu] + \[Nu]^2 - \[Mu] (3 + 2 \[Nu])) LegendreP[2 + \[Nu], \[Mu], 2, z])/ ((3 + 2 \[Nu])^4 (-7 - 2 \[Nu] + 28 \[Nu]^2 + 8 \[Nu]^3)) + ((1 - \[Mu] + \[Nu]) (2 - \[Mu] + \[Nu]) (3 - \[Mu] + \[Nu]) (4 - \[Mu] + \[Nu]) LegendreP[4 + \[Nu], \[Mu], 2, z])/ ((1 + 2 \[Nu]) (3 + 2 \[Nu])^2 (5 + 2 \[Nu])^2 (7 + 2 \[Nu]))) \[Gamma]^4 + \[Ellipsis] /; (\[Gamma] -> 0)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["SpheroidalPS", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "2", ",", "z"]], "]"]], "+", RowBox[List[FractionBox[RowBox[List[" ", "1"]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]], RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "\[Mu]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["\[Mu]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["LegendreP", "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], "+", "\[Nu]"]], ",", "\[Mu]", ",", "2", ",", "z"]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], "2"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "-", "\[Mu]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["LegendreP", "[", RowBox[List[RowBox[List["2", "+", "\[Nu]"]], ",", "\[Mu]", ",", "2", ",", "z"]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], "2"]]]], ")"]], SuperscriptBox["\[Gamma]", "2"]]], "+", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", "\[Mu]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "\[Mu]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "\[Mu]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["\[Mu]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["LegendreP", "[", RowBox[List[RowBox[List[RowBox[List["-", "4"]], "+", "\[Nu]"]], ",", "\[Mu]", ",", "2", ",", "z"]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "5"]], "-", RowBox[List["8", " ", "\[Nu]"]], "+", RowBox[List["4", " ", SuperscriptBox["\[Nu]", "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["3", "-", RowBox[List["8", " ", "\[Nu]"]], "+", RowBox[List["4", " ", SuperscriptBox["\[Nu]", "2"]]]]], ")"]], "2"]]]], "+", FractionBox[RowBox[List["8", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["4", " ", SuperscriptBox["\[Mu]", "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Mu]", "2"], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "\[Nu]"]], ")"]], " ", "\[Nu]"]], "+", RowBox[List["\[Mu]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]], ")"]], " ", RowBox[List["LegendreP", "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], "+", "\[Nu]"]], ",", "\[Mu]", ",", "2", ",", "z"]], "]"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "15"]], "-", RowBox[List["34", " ", "\[Nu]"]], "-", RowBox[List["4", " ", SuperscriptBox["\[Nu]", "2"]]], "+", RowBox[List["8", " ", SuperscriptBox["\[Nu]", "3"]]]]], ")"]]]]], "-", RowBox[List[FractionBox["1", RowBox[List["1", "+", RowBox[List["2", " ", "\[Nu]"]]]]], RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[Mu]", "-", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "\[Mu]", "-", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "\[Mu]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["\[Mu]", "+", "\[Nu]"]], ")"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "-", "\[Mu]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "\[Mu]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "\[Mu]", "+", "\[Nu]"]], ")"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], "4"], " ", RowBox[List["(", RowBox[List["5", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]]], ")"]], " ", RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "2", ",", "z"]], "]"]]]]]], "-", FractionBox[RowBox[List["8", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["4", " ", SuperscriptBox["\[Mu]", "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", SuperscriptBox["\[Mu]", "2"], "+", RowBox[List["3", " ", "\[Nu]"]], "+", SuperscriptBox["\[Nu]", "2"], "-", RowBox[List["\[Mu]", " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]], ")"]], " ", RowBox[List["LegendreP", "[", RowBox[List[RowBox[List["2", "+", "\[Nu]"]], ",", "\[Mu]", ",", "2", ",", "z"]], "]"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "7"]], "-", RowBox[List["2", " ", "\[Nu]"]], "+", RowBox[List["28", " ", SuperscriptBox["\[Nu]", "2"]]], "+", RowBox[List["8", " ", SuperscriptBox["\[Nu]", "3"]]]]], ")"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "-", "\[Mu]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["3", "-", "\[Mu]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["4", "-", "\[Mu]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["LegendreP", "[", RowBox[List[RowBox[List["4", "+", "\[Nu]"]], ",", "\[Mu]", ",", "2", ",", "z"]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["5", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], "2"], " ", RowBox[List["(", RowBox[List["7", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]]], ")"]], SuperscriptBox["\[Gamma]", "4"]]], "+", "\[Ellipsis]"]]]], "/;", RowBox[List["(", RowBox[List["\[Gamma]", "\[Rule]", "0"]], ")"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <msub> <mi> PS </mi> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> &#956; </mi> </mrow> </msub> <mo> ( </mo> <mrow> <mi> &#947; </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubscriptBox[StyleBox[&quot;PS&quot;, &quot;IT&quot;], RowBox[List[TagBox[&quot;\[Nu]&quot;, SpheroidalPS, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;\[Mu]&quot;, SpheroidalPS, Rule[Editable, True], Rule[Selectable, True]]]]], &quot;(&quot;, RowBox[List[TagBox[&quot;\[Gamma]&quot;, SpheroidalPS, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;z&quot;, SpheroidalPS, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[SpheroidalPS[SlotSequence[1]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> &#8733; </mo> <mrow> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox[&quot;P&quot;, LegendreP] </annotation> </semantics> <mi> &#957; </mi> <mi> &#956; </mi> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox[&quot;z&quot;, HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#956; </mi> </mrow> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#956; </mi> </mrow> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox[&quot;P&quot;, LegendreP] </annotation> </semantics> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mi> &#956; </mi> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox[&quot;z&quot;, HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> + </mo> <mi> &#957; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox[&quot;P&quot;, LegendreP] </annotation> </semantics> <mrow> <mi> &#957; </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mi> &#956; </mi> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox[&quot;z&quot;, HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#947; </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> + </mo> <mi> &#957; </mi> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> + </mo> <mi> &#957; </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> + </mo> <mi> &#957; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> &#957; </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> - </mo> <mn> 5 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> &#957; </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox[&quot;P&quot;, LegendreP] </annotation> </semantics> <mrow> <mi> &#957; </mi> <mo> - </mo> <mn> 4 </mn> </mrow> <mi> &#956; </mi> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox[&quot;z&quot;, HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> &#956; </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#956; </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <msup> <mi> &#957; </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> &#957; </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 34 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> - </mo> <mn> 15 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox[&quot;P&quot;, LegendreP] </annotation> </semantics> <mrow> <mi> &#957; </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mi> &#956; </mi> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox[&quot;z&quot;, HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> - </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> + </mo> <mi> &#957; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#956; </mi> </mrow> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#956; </mi> </mrow> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 5 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox[&quot;P&quot;, LegendreP] </annotation> </semantics> <mi> &#957; </mi> <mi> &#956; </mi> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox[&quot;z&quot;, HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#956; </mi> </mrow> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#956; </mi> </mrow> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#956; </mi> </mrow> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#956; </mi> </mrow> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 5 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 7 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox[&quot;P&quot;, LegendreP] </annotation> </semantics> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 4 </mn> </mrow> <mi> &#956; </mi> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox[&quot;z&quot;, HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> &#956; </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#956; </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> + </mo> <msup> <mi> &#957; </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <msup> <mi> &#957; </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 28 </mn> <mo> &#8290; </mo> <msup> <mi> &#957; </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> - </mo> <mn> 7 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox[&quot;P&quot;, LegendreP] </annotation> </semantics> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mi> &#956; </mi> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox[&quot;z&quot;, HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#947; </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mo> &#8230; </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#947; </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> SpheroidalPS </ci> <ci> &#957; </ci> <ci> &#956; </ci> <ci> &#947; </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <ci> LegendreP </ci> <ci> &#957; </ci> <ci> &#956; </ci> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> LegendreP </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> <ci> &#956; </ci> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <plus /> <ci> &#956; </ci> <ci> &#957; </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> &#956; </ci> <ci> &#957; </ci> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> LegendreP </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> -2 </cn> </apply> <ci> &#956; </ci> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <ci> &#947; </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <plus /> <ci> &#956; </ci> <ci> &#957; </ci> <cn type='integer'> -3 </cn> </apply> <apply> <plus /> <ci> &#956; </ci> <ci> &#957; </ci> <cn type='integer'> -2 </cn> </apply> <apply> <plus /> <ci> &#956; </ci> <ci> &#957; </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> &#956; </ci> <ci> &#957; </ci> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <ci> &#957; </ci> </apply> </apply> <cn type='integer'> -5 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <ci> &#957; </ci> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> LegendreP </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> -4 </cn> </apply> <ci> &#956; </ci> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> &#956; </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <power /> <ci> &#956; </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> -1 </cn> </apply> <ci> &#956; </ci> </apply> <apply> <times /> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> -1 </cn> </apply> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <ci> &#957; </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 34 </cn> <ci> &#957; </ci> </apply> </apply> <cn type='integer'> -15 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> LegendreP </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> -2 </cn> </apply> <ci> &#956; </ci> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> &#956; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <plus /> <ci> &#956; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> &#956; </ci> <ci> &#957; </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> &#956; </ci> <ci> &#957; </ci> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> -3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <ci> &#956; </ci> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> &#956; </ci> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 5 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> LegendreP </ci> <ci> &#957; </ci> <ci> &#956; </ci> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <ci> &#957; </ci> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <ci> &#957; </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 5 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 7 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> LegendreP </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 4 </cn> </apply> <ci> &#956; </ci> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> &#956; </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <power /> <ci> &#956; </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 3 </cn> </apply> <ci> &#956; </ci> </apply> </apply> <apply> <power /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <ci> &#957; </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 28 </cn> <apply> <power /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> </apply> <cn type='integer'> -7 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> LegendreP </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> <ci> &#956; </ci> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <ci> &#947; </ci> <cn type='integer'> 4 </cn> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> <apply> <ci> Rule </ci> <ci> &#947; </ci> <cn type='integer'> 0 </cn> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["SpheroidalPS", "[", RowBox[List["\[Nu]_", ",", "\[Mu]_", ",", "\[Gamma]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "2", ",", "z"]], "]"]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "\[Mu]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["\[Mu]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["LegendreP", "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], "+", "\[Nu]"]], ",", "\[Mu]", ",", "2", ",", "z"]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], "2"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "-", "\[Mu]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["LegendreP", "[", RowBox[List[RowBox[List["2", "+", "\[Nu]"]], ",", "\[Mu]", ",", "2", ",", "z"]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], "2"]]]], ")"]], " ", SuperscriptBox["\[Gamma]", "2"]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]], "+", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", "\[Mu]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "\[Mu]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "\[Mu]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["\[Mu]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["LegendreP", "[", RowBox[List[RowBox[List[RowBox[List["-", "4"]], "+", "\[Nu]"]], ",", "\[Mu]", ",", "2", ",", "z"]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "5"]], "-", RowBox[List["8", " ", "\[Nu]"]], "+", RowBox[List["4", " ", SuperscriptBox["\[Nu]", "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["3", "-", RowBox[List["8", " ", "\[Nu]"]], "+", RowBox[List["4", " ", SuperscriptBox["\[Nu]", "2"]]]]], ")"]], "2"]]]], "+", FractionBox[RowBox[List["8", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["4", " ", SuperscriptBox["\[Mu]", "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Mu]", "2"], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "\[Nu]"]], ")"]], " ", "\[Nu]"]], "+", RowBox[List["\[Mu]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]], ")"]], " ", RowBox[List["LegendreP", "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], "+", "\[Nu]"]], ",", "\[Mu]", ",", "2", ",", "z"]], "]"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "15"]], "-", RowBox[List["34", " ", "\[Nu]"]], "-", RowBox[List["4", " ", SuperscriptBox["\[Nu]", "2"]]], "+", RowBox[List["8", " ", SuperscriptBox["\[Nu]", "3"]]]]], ")"]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[Mu]", "-", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "\[Mu]", "-", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "\[Mu]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["\[Mu]", "+", "\[Nu]"]], ")"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "-", "\[Mu]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "\[Mu]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "\[Mu]", "+", "\[Nu]"]], ")"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], "4"], " ", RowBox[List["(", RowBox[List["5", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]]], ")"]], " ", RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "2", ",", "z"]], "]"]]]], RowBox[List["1", "+", RowBox[List["2", " ", "\[Nu]"]]]]], "-", FractionBox[RowBox[List["8", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["4", " ", SuperscriptBox["\[Mu]", "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", SuperscriptBox["\[Mu]", "2"], "+", RowBox[List["3", " ", "\[Nu]"]], "+", SuperscriptBox["\[Nu]", "2"], "-", RowBox[List["\[Mu]", " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]], ")"]], " ", RowBox[List["LegendreP", "[", RowBox[List[RowBox[List["2", "+", "\[Nu]"]], ",", "\[Mu]", ",", "2", ",", "z"]], "]"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "7"]], "-", RowBox[List["2", " ", "\[Nu]"]], "+", RowBox[List["28", " ", SuperscriptBox["\[Nu]", "2"]]], "+", RowBox[List["8", " ", SuperscriptBox["\[Nu]", "3"]]]]], ")"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "-", "\[Mu]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["3", "-", "\[Mu]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["4", "-", "\[Mu]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["LegendreP", "[", RowBox[List[RowBox[List["4", "+", "\[Nu]"]], ",", "\[Mu]", ",", "2", ",", "z"]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["5", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], "2"], " ", RowBox[List["(", RowBox[List["7", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]]], ")"]], " ", SuperscriptBox["\[Gamma]", "4"]]], "+", "\[Ellipsis]"]], "/;", RowBox[List["(", RowBox[List["\[Gamma]", "\[Rule]", "0"]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02