|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/11.09.03.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SpheroidalQS[\[Nu], 1/2, \[Gamma], z] ==
(-(Sqrt[Pi]/(Sqrt[2] (1 - z^2)^(1/4))))
MathieuS[MathieuCharacteristicB[\[Nu] + 1/2, \[Gamma]^2/4], \[Gamma]^2/4,
ArcCos[z]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["SpheroidalQS", "[", RowBox[List["\[Nu]", ",", FractionBox["1", "2"], ",", "\[Gamma]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SqrtBox["\[Pi]"], " "]], RowBox[List[SqrtBox["2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["z", "2"]]], ")"]], RowBox[List["1", "/", "4"]]]]]]]], RowBox[List["MathieuS", "[", RowBox[List[RowBox[List["MathieuCharacteristicB", "[", RowBox[List[RowBox[List["\[Nu]", "+", FractionBox["1", "2"]]], ",", FractionBox[SuperscriptBox["\[Gamma]", "2"], "4"]]], "]"]], ",", FractionBox[SuperscriptBox["\[Gamma]", "2"], "4"], ",", RowBox[List["ArcCos", "[", "z", "]"]]]], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <msub> <mi> QS </mi> <mrow> <mi> ν </mi> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msub> <mo> ( </mo> <mrow> <mi> γ </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubscriptBox[StyleBox["QS", "IT"], RowBox[List[TagBox["\[Nu]", SpheroidalQS, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["1", "2"], SpheroidalQS, Rule[Editable, True], Rule[Selectable, True]]]]], "(", RowBox[List[TagBox["\[Gamma]", SpheroidalQS, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["z", SpheroidalQS, Rule[Editable, True], Rule[Selectable, True]]]], ")"]], InterpretTemplate[Function[SpheroidalQS[SlotSequence[1]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo>  </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <msqrt> <mi> π </mi> </msqrt> <mtext> </mtext> </mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mn> 4 </mn> </mroot> </mrow> </mfrac> </mrow> <mo> ⁢ </mo> <mrow> <mi> Se </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msub> <semantics> <mi> b </mi> <annotation-xml encoding='MathML-Content'> <ci> MathieuCharacteristicB </ci> </annotation-xml> </semantics> <mrow> <mi> ν </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msub> <mo> ( </mo> <mfrac> <msup> <mi> γ </mi> <mn> 2 </mn> </msup> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> , </mo> <mfrac> <msup> <mi> γ </mi> <mn> 2 </mn> </msup> <mn> 4 </mn> </mfrac> <mo> , </mo> <mrow> <msup> <mi> cos </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> SpheroidalQS </ci> <ci> ν </ci> <cn type='rational'> 1 <sep /> 2 </cn> <ci> γ </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Se </ci> <apply> <ci> MathieuCharacteristicB </ci> <apply> <plus /> <ci> ν </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <apply> <power /> <ci> γ </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <ci> γ </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <arccos /> <ci> z </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["SpheroidalQS", "[", RowBox[List["\[Nu]_", ",", FractionBox["1", "2"], ",", "\[Gamma]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["MathieuS", "[", RowBox[List[RowBox[List["MathieuCharacteristicB", "[", RowBox[List[RowBox[List["\[Nu]", "+", FractionBox["1", "2"]]], ",", FractionBox[SuperscriptBox["\[Gamma]", "2"], "4"]]], "]"]], ",", FractionBox[SuperscriptBox["\[Gamma]", "2"], "4"], ",", RowBox[List["ArcCos", "[", "z", "]"]]]], "]"]]]], RowBox[List[SqrtBox["2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["z", "2"]]], ")"]], RowBox[List["1", "/", "4"]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|