Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











SpheroidalQS






Mathematica Notation

Traditional Notation









Mathieu and Spheroidal Functions > SpheroidalQS[nu,mu,gamma,z] > Series representations > Generalized power series > Expansions at z==0





http://functions.wolfram.com/11.09.06.0005.01









  


  










Input Form





SpheroidalQS[\[Nu], \[Mu], \[Gamma], z] \[Proportional] SpheroidalQS[\[Nu], \[Mu], \[Gamma], 0] + z SpheroidalQSPrime[\[Nu], \[Mu], \[Gamma], 0] - (1/2) (\[Gamma]^2 - \[Mu]^2 + SpheroidalEigenvalue[\[Nu], \[Mu], \[Gamma]]) SpheroidalQS[\[Nu], \[Mu], \[Gamma], 0] z^2 + (1/6) (2 SpheroidalQSPrime[\[Nu], \[Mu], \[Gamma], 0] - (\[Gamma]^2 - \[Mu]^2 + SpheroidalEigenvalue[\[Nu], \[Mu], \[Gamma]]) SpheroidalQSPrime[\[Nu], \[Mu], \[Gamma], 0]) z^3 + \[Ellipsis] /; (z -> 0)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["SpheroidalQS", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List["SpheroidalQS", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]", ",", "0"]], "]"]], "+", RowBox[List["z", " ", RowBox[List["SpheroidalQSPrime", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]", ",", "0"]], "]"]]]], "-", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Gamma]", "2"], "-", SuperscriptBox["\[Mu]", "2"], "+", RowBox[List["SpheroidalEigenvalue", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]"]], "]"]]]], ")"]], " ", RowBox[List["SpheroidalQS", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]", ",", "0"]], "]"]], SuperscriptBox["z", "2"]]], " ", "+", RowBox[List[FractionBox["1", "6"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["SpheroidalQSPrime", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]", ",", "0"]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[Gamma]", "2"], "-", SuperscriptBox["\[Mu]", "2"], "+", RowBox[List["SpheroidalEigenvalue", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]"]], "]"]]]], ")"]], " ", RowBox[List["SpheroidalQSPrime", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]", ",", "0"]], "]"]]]]]], ")"]], SuperscriptBox["z", "3"]]], " ", "+", "\[Ellipsis]"]]]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", "0"]], ")"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <msub> <mi> QS </mi> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> &#956; </mi> </mrow> </msub> <mo> ( </mo> <mrow> <mi> &#947; </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubscriptBox[StyleBox[&quot;QS&quot;, &quot;IT&quot;], RowBox[List[TagBox[&quot;\[Nu]&quot;, SpheroidalQS, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;\[Mu]&quot;, SpheroidalQS, Rule[Editable, True], Rule[Selectable, True]]]]], &quot;(&quot;, RowBox[List[TagBox[&quot;\[Gamma]&quot;, SpheroidalQS, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;z&quot;, SpheroidalQS, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[SpheroidalQS[SlotSequence[1]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> &#8733; </mo> <mrow> <semantics> <mrow> <msub> <mi> QS </mi> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> &#956; </mi> </mrow> </msub> <mo> ( </mo> <mrow> <mi> &#947; </mi> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubscriptBox[StyleBox[&quot;QS&quot;, &quot;IT&quot;], RowBox[List[TagBox[&quot;\[Nu]&quot;, SpheroidalQS, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;\[Mu]&quot;, SpheroidalQS, Rule[Editable, True], Rule[Selectable, True]]]]], &quot;(&quot;, RowBox[List[TagBox[&quot;\[Gamma]&quot;, SpheroidalQS, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;0&quot;, SpheroidalQS, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[SpheroidalQS[SlotSequence[1]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> + </mo> <mrow> <semantics> <mrow> <msup> <msub> <mi> QS </mi> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> &#956; </mi> </mrow> </msub> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <mi> &#947; </mi> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SuperscriptBox[SubscriptBox[StyleBox[&quot;QS&quot;, &quot;IT&quot;], RowBox[List[TagBox[&quot;\[Nu]&quot;, SpheroidalQSPrime, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;\[Mu]&quot;, SpheroidalQSPrime, Rule[Editable, True], Rule[Selectable, True]]]]], &quot;\[Prime]&quot;], &quot;(&quot;, RowBox[List[TagBox[&quot;\[Gamma]&quot;, SpheroidalQSPrime, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;0&quot;, SpheroidalQSPrime, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[SpheroidalQSPrime[SlotSequence[1]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#947; </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> &#956; </mi> <mn> 2 </mn> </msup> <mo> + </mo> <semantics> <mrow> <msub> <mi> &#955; </mi> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> &#956; </mi> </mrow> </msub> <mo> ( </mo> <mi> &#947; </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubscriptBox[&quot;\[Lambda]&quot;, RowBox[List[TagBox[&quot;\[Nu]&quot;, SpheroidalEigenvalue, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;\[Mu]&quot;, SpheroidalEigenvalue, Rule[Editable, True], Rule[Selectable, True]]]]], &quot;(&quot;, TagBox[&quot;\[Gamma]&quot;, SpheroidalEigenvalue, Rule[Editable, True], Rule[Selectable, True]], &quot;)&quot;]], InterpretTemplate[Function[SpheroidalEigenvalue[SlotSequence[1]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <msub> <mi> QS </mi> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> &#956; </mi> </mrow> </msub> <mo> ( </mo> <mrow> <mi> &#947; </mi> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubscriptBox[StyleBox[&quot;QS&quot;, &quot;IT&quot;], RowBox[List[TagBox[&quot;\[Nu]&quot;, SpheroidalQS, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;\[Mu]&quot;, SpheroidalQS, Rule[Editable, True], Rule[Selectable, True]]]]], &quot;(&quot;, RowBox[List[TagBox[&quot;\[Gamma]&quot;, SpheroidalQS, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;0&quot;, SpheroidalQS, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[SpheroidalQS[SlotSequence[1]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 6 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <semantics> <mrow> <msup> <msub> <mi> QS </mi> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> &#956; </mi> </mrow> </msub> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <mi> &#947; </mi> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SuperscriptBox[SubscriptBox[StyleBox[&quot;QS&quot;, &quot;IT&quot;], RowBox[List[TagBox[&quot;\[Nu]&quot;, SpheroidalQSPrime, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;\[Mu]&quot;, SpheroidalQSPrime, Rule[Editable, True], Rule[Selectable, True]]]]], &quot;\[Prime]&quot;], &quot;(&quot;, RowBox[List[TagBox[&quot;\[Gamma]&quot;, SpheroidalQSPrime, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;0&quot;, SpheroidalQSPrime, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[SpheroidalQSPrime[SlotSequence[1]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#947; </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> &#956; </mi> <mn> 2 </mn> </msup> <mo> + </mo> <semantics> <mrow> <msub> <mi> &#955; </mi> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> &#956; </mi> </mrow> </msub> <mo> ( </mo> <mi> &#947; </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubscriptBox[&quot;\[Lambda]&quot;, RowBox[List[TagBox[&quot;\[Nu]&quot;, SpheroidalEigenvalue, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;\[Mu]&quot;, SpheroidalEigenvalue, Rule[Editable, True], Rule[Selectable, True]]]]], &quot;(&quot;, TagBox[&quot;\[Gamma]&quot;, SpheroidalEigenvalue, Rule[Editable, True], Rule[Selectable, True]], &quot;)&quot;]], InterpretTemplate[Function[SpheroidalEigenvalue[SlotSequence[1]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <msup> <msub> <mi> QS </mi> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> &#956; </mi> </mrow> </msub> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <mi> &#947; </mi> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SuperscriptBox[SubscriptBox[StyleBox[&quot;QS&quot;, &quot;IT&quot;], RowBox[List[TagBox[&quot;\[Nu]&quot;, SpheroidalQSPrime, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;\[Mu]&quot;, SpheroidalQSPrime, Rule[Editable, True], Rule[Selectable, True]]]]], &quot;\[Prime]&quot;], &quot;(&quot;, RowBox[List[TagBox[&quot;\[Gamma]&quot;, SpheroidalQSPrime, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;0&quot;, SpheroidalQSPrime, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[SpheroidalQSPrime[SlotSequence[1]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mo> &#8230; </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> SpheroidalQS </ci> <ci> &#957; </ci> <ci> &#956; </ci> <ci> &#947; </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <ci> SpheroidalQS </ci> <ci> &#957; </ci> <ci> &#956; </ci> <ci> &#947; </ci> <cn type='integer'> 0 </cn> </apply> <apply> <times /> <apply> <ci> SpheroidalQSPrime </ci> <ci> &#957; </ci> <ci> &#956; </ci> <ci> &#947; </ci> <cn type='integer'> 0 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <power /> <ci> &#947; </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> &#956; </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> SpheroidalEigenvalue </ci> <ci> &#957; </ci> <ci> &#956; </ci> <ci> &#947; </ci> </apply> </apply> <apply> <ci> SpheroidalQS </ci> <ci> &#957; </ci> <ci> &#956; </ci> <ci> &#947; </ci> <cn type='integer'> 0 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 6 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> SpheroidalQSPrime </ci> <ci> &#957; </ci> <ci> &#956; </ci> <ci> &#947; </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> &#947; </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> &#956; </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> SpheroidalEigenvalue </ci> <ci> &#957; </ci> <ci> &#956; </ci> <ci> &#947; </ci> </apply> </apply> <apply> <ci> SpheroidalQSPrime </ci> <ci> &#957; </ci> <ci> &#956; </ci> <ci> &#947; </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> <apply> <ci> Rule </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["SpheroidalQS", "[", RowBox[List["\[Nu]_", ",", "\[Mu]_", ",", "\[Gamma]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["SpheroidalQS", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]", ",", "0"]], "]"]], "+", RowBox[List["z", " ", RowBox[List["SpheroidalQSPrime", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]", ",", "0"]], "]"]]]], "-", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Gamma]", "2"], "-", SuperscriptBox["\[Mu]", "2"], "+", RowBox[List["SpheroidalEigenvalue", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]"]], "]"]]]], ")"]], " ", RowBox[List["SpheroidalQS", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]", ",", "0"]], "]"]], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List[FractionBox["1", "6"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["SpheroidalQSPrime", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]", ",", "0"]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[Gamma]", "2"], "-", SuperscriptBox["\[Mu]", "2"], "+", RowBox[List["SpheroidalEigenvalue", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]"]], "]"]]]], ")"]], " ", RowBox[List["SpheroidalQSPrime", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]", ",", "0"]], "]"]]]]]], ")"]], " ", SuperscriptBox["z", "3"]]], "+", "\[Ellipsis]"]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", "0"]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02