Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











SpheroidalS1Prime






Mathematica Notation

Traditional Notation









Mathieu and Spheroidal Functions > SpheroidalS1Prime[nu,mu,gamma,z] > Differential equations > Ordinary linear differential equations and wronskians > For the direct function itself





http://functions.wolfram.com/11.14.13.0004.01









  


  










Input Form





Wronskian[SpheroidalS1Prime[\[Nu], \[Mu], \[Gamma], g[z]], SpheroidalS2Prime[\[Nu], \[Mu], \[Gamma], g[z]], z] == Derivative[1][g][z] (-(\[Gamma]^2/(1 - g[z]^2)) + \[Mu]^2/(1 - g[z]^2)^3 - SpheroidalEigenvalue[\[Nu], \[Mu], \[Gamma]]/(1 - g[z]^2)^2) (SpheroidalS1Prime[\[Nu], \[Mu], \[Gamma], 0] SpheroidalS2[\[Nu], \[Mu], \[Gamma], 0] - SpheroidalS1[\[Nu], \[Mu], \[Gamma], 0] SpheroidalS2Prime[\[Nu], \[Mu], \[Gamma], 0])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Wronskian", "[", RowBox[List[RowBox[List["SpheroidalS1Prime", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]", ",", RowBox[List["g", "[", "z", "]"]]]], "]"]], ",", RowBox[List["SpheroidalS2Prime", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]", ",", RowBox[List["g", "[", "z", "]"]]]], "]"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox["\[Gamma]", "2"], RowBox[List["1", "-", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"]]]]]], " ", "+", FractionBox[SuperscriptBox["\[Mu]", "2"], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"]]], ")"]], "3"]], " ", "-", FractionBox[RowBox[List["SpheroidalEigenvalue", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]"]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"]]], ")"]], "2"]]]], " ", ")"]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["SpheroidalS1Prime", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]", ",", "0"]], "]"]], " ", RowBox[List["SpheroidalS2", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]", ",", "0"]], "]"]]]], "-", RowBox[List[RowBox[List["SpheroidalS1", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]", ",", "0"]], "]"]], " ", RowBox[List["SpheroidalS2Prime", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]", ",", "0"]], "]"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <mi> W </mi> <mi> z </mi> </msub> <mo> ( </mo> <mrow> <semantics> <mrow> <msup> <msubsup> <mi> S </mi> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> &#956; </mi> </mrow> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msubsup> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <mi> &#947; </mi> <mo> , </mo> <mrow> <mi> g </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SuperscriptBox[SubsuperscriptBox[&quot;S&quot;, RowBox[List[TagBox[&quot;\[Nu]&quot;, SpheroidalS1Prime, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;\[Mu]&quot;, SpheroidalS1Prime, Rule[Editable, True], Rule[Selectable, True]]]], RowBox[List[&quot;(&quot;, &quot;1&quot;, &quot;)&quot;]]], &quot;\[Prime]&quot;], &quot;(&quot;, RowBox[List[TagBox[&quot;\[Gamma]&quot;, SpheroidalS1Prime, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;g&quot;, &quot;(&quot;, &quot;z&quot;, &quot;)&quot;]], SpheroidalS1Prime, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[SpheroidalS1Prime[SlotSequence[1]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> , </mo> <semantics> <mrow> <msup> <msubsup> <mi> S </mi> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> &#956; </mi> </mrow> <mrow> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </msubsup> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <mi> &#947; </mi> <mo> , </mo> <mrow> <mi> g </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SuperscriptBox[SubsuperscriptBox[&quot;S&quot;, RowBox[List[TagBox[&quot;\[Nu]&quot;, SpheroidalS2Prime, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;\[Mu]&quot;, SpheroidalS2Prime, Rule[Editable, True], Rule[Selectable, True]]]], RowBox[List[&quot;(&quot;, &quot;2&quot;, &quot;)&quot;]]], &quot;\[Prime]&quot;], &quot;(&quot;, RowBox[List[TagBox[&quot;\[Gamma]&quot;, SpheroidalS2Prime, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;g&quot;, &quot;(&quot;, &quot;z&quot;, &quot;)&quot;]], SpheroidalS2Prime, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[SpheroidalS2Prime[SlotSequence[1]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mtext> </mtext> <mrow> <mrow> <msup> <mi> g </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <msup> <mi> &#947; </mi> <mn> 2 </mn> </msup> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mrow> <mi> g </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> </mrow> <mo> - </mo> <mfrac> <semantics> <mrow> <msub> <mi> &#955; </mi> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> &#956; </mi> </mrow> </msub> <mo> ( </mo> <mi> &#947; </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubscriptBox[&quot;\[Lambda]&quot;, RowBox[List[TagBox[&quot;\[Nu]&quot;, SpheroidalEigenvalue, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;\[Mu]&quot;, SpheroidalEigenvalue, Rule[Editable, True], Rule[Selectable, True]]]]], &quot;(&quot;, TagBox[&quot;\[Gamma]&quot;, SpheroidalEigenvalue, Rule[Editable, True], Rule[Selectable, True]], &quot;)&quot;]], InterpretTemplate[Function[SpheroidalEigenvalue[SlotSequence[1]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mrow> <mi> g </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mfrac> <msup> <mi> &#956; </mi> <mn> 2 </mn> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mrow> <mi> g </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mrow> <msup> <msubsup> <mi> S </mi> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> &#956; </mi> </mrow> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msubsup> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <mi> &#947; </mi> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SuperscriptBox[SubsuperscriptBox[&quot;S&quot;, RowBox[List[TagBox[&quot;\[Nu]&quot;, SpheroidalS1Prime, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;\[Mu]&quot;, SpheroidalS1Prime, Rule[Editable, True], Rule[Selectable, True]]]], RowBox[List[&quot;(&quot;, &quot;1&quot;, &quot;)&quot;]]], &quot;\[Prime]&quot;], &quot;(&quot;, RowBox[List[TagBox[&quot;\[Gamma]&quot;, SpheroidalS1Prime, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;0&quot;, SpheroidalS1Prime, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[SpheroidalS1Prime[SlotSequence[1]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <mrow> <msubsup> <mi> S </mi> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> &#956; </mi> </mrow> <mrow> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mrow> <mi> &#947; </mi> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[&quot;S&quot;, RowBox[List[TagBox[&quot;\[Nu]&quot;, SpheroidalS2, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;\[Mu]&quot;, SpheroidalS2, Rule[Editable, True], Rule[Selectable, True]]]], RowBox[List[&quot;(&quot;, &quot;2&quot;, &quot;)&quot;]]], &quot;(&quot;, RowBox[List[TagBox[&quot;\[Gamma]&quot;, SpheroidalS2, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;0&quot;, SpheroidalS2, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[SpheroidalS2[SlotSequence[1]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <semantics> <mrow> <msubsup> <mi> S </mi> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> &#956; </mi> </mrow> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mrow> <mi> &#947; </mi> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[&quot;S&quot;, RowBox[List[TagBox[&quot;\[Nu]&quot;, SpheroidalS1, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;\[Mu]&quot;, SpheroidalS1, Rule[Editable, True], Rule[Selectable, True]]]], RowBox[List[&quot;(&quot;, &quot;1&quot;, &quot;)&quot;]]], &quot;(&quot;, RowBox[List[TagBox[&quot;\[Gamma]&quot;, SpheroidalS1, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;0&quot;, SpheroidalS1, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[SpheroidalS1[SlotSequence[1]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <mrow> <msup> <msubsup> <mi> S </mi> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> &#956; </mi> </mrow> <mrow> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </msubsup> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <mi> &#947; </mi> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SuperscriptBox[SubsuperscriptBox[&quot;S&quot;, RowBox[List[TagBox[&quot;\[Nu]&quot;, SpheroidalS2Prime, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;\[Mu]&quot;, SpheroidalS2Prime, Rule[Editable, True], Rule[Selectable, True]]]], RowBox[List[&quot;(&quot;, &quot;2&quot;, &quot;)&quot;]]], &quot;\[Prime]&quot;], &quot;(&quot;, RowBox[List[TagBox[&quot;\[Gamma]&quot;, SpheroidalS2Prime, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;0&quot;, SpheroidalS2Prime, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[SpheroidalS2Prime[SlotSequence[1]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <apply> <ci> Subscript </ci> <ci> W </ci> <ci> z </ci> </apply> <apply> <ci> SpheroidalS1Prime </ci> <ci> &#957; </ci> <ci> &#956; </ci> <ci> &#947; </ci> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <apply> <ci> SpheroidalS2Prime </ci> <ci> &#957; </ci> <ci> &#956; </ci> <ci> &#947; </ci> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> &#947; </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <ci> g </ci> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> SpheroidalEigenvalue </ci> <ci> &#957; </ci> <ci> &#956; </ci> <ci> &#947; </ci> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <ci> g </ci> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <ci> &#956; </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <ci> g </ci> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> SpheroidalS1Prime </ci> <ci> &#957; </ci> <ci> &#956; </ci> <ci> &#947; </ci> <cn type='integer'> 0 </cn> </apply> <apply> <ci> SpheroidalS2 </ci> <ci> &#957; </ci> <ci> &#956; </ci> <ci> &#947; </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> SpheroidalS1 </ci> <ci> &#957; </ci> <ci> &#956; </ci> <ci> &#947; </ci> <cn type='integer'> 0 </cn> </apply> <apply> <ci> SpheroidalS2Prime </ci> <ci> &#957; </ci> <ci> &#956; </ci> <ci> &#947; </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Wronskian", "[", RowBox[List[RowBox[List["SpheroidalS1Prime", "[", RowBox[List["\[Nu]_", ",", "\[Mu]_", ",", "\[Gamma]_", ",", RowBox[List["g", "[", "z_", "]"]]]], "]"]], ",", RowBox[List["SpheroidalS2Prime", "[", RowBox[List["\[Nu]_", ",", "\[Mu]_", ",", "\[Gamma]_", ",", RowBox[List["g", "[", "z_", "]"]]]], "]"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox["\[Gamma]", "2"], RowBox[List["1", "-", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"]]]]]], "+", FractionBox[SuperscriptBox["\[Mu]", "2"], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"]]], ")"]], "3"]], "-", FractionBox[RowBox[List["SpheroidalEigenvalue", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]"]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"]]], ")"]], "2"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["SpheroidalS1Prime", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]", ",", "0"]], "]"]], " ", RowBox[List["SpheroidalS2", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]", ",", "0"]], "]"]]]], "-", RowBox[List[RowBox[List["SpheroidalS1", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]", ",", "0"]], "]"]], " ", RowBox[List["SpheroidalS2Prime", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]", ",", "0"]], "]"]]]]]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02