|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/13.10.24.0001.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Product[((2 k + 1)/(2 k + 2))^(DigitCount[k, 2, 1] (-1)^DigitCount[k, 2, 1]),
{k, 0, Infinity}] == 2^(1/4)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "0"]], "\[Infinity]"], SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], RowBox[List[RowBox[List["2", " ", "k"]], "+", "2"]]], ")"]], RowBox[List[RowBox[List["DigitCount", "[", RowBox[List["k", ",", "2", ",", "1"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["DigitCount", "[", RowBox[List["k", ",", "2", ",", "1"]], "]"]]]]]]]], "\[Equal]", SuperscriptBox["2", RowBox[List["1", "/", "4"]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> </mfrac> <mo> ) </mo> </mrow> <mrow> <mrow> <msubsup> <mi> s </mi> <mn> 2 </mn> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mi> k </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <msubsup> <mi> s </mi> <mn> 2 </mn> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mi> k </mi> <mo> ) </mo> </mrow> </msup> </mrow> </msup> </mrow> <mo> ⩵ </mo> <mroot> <mn> 2 </mn> <mn> 4 </mn> </mroot> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> s </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <ci> k </ci> </apply> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> s </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "0"]], "\[Infinity]"], SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], RowBox[List[RowBox[List["2", " ", "k"]], "+", "2"]]], ")"]], RowBox[List[RowBox[List["DigitCount", "[", RowBox[List["k", ",", "2", ",", "1"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["DigitCount", "[", RowBox[List["k", ",", "2", ",", "1"]], "]"]]]]]]]], "]"]], "\[RuleDelayed]", SuperscriptBox["2", RowBox[List["1", "/", "4"]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|