|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/13.01.03.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
FactorInteger[Subscript[p, 1]^Subscript[n, 1] Subscript[p, 2]^
Subscript[n, 2]] == {{Subscript[p, 1], Subscript[n, 1]},
{Subscript[p, 2], Subscript[n, 2]}} /; Element[Subscript[p, k], Primes] &&
Element[Subscript[n, k], Integers] && Subscript[n, k] > 0 &&
Element[k, {1, 2}] && Subscript[p, 1] < Subscript[p, 2]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["FactorInteger", "[", RowBox[List[SubsuperscriptBox["p", "1", SubscriptBox["n", "1"]], SubsuperscriptBox["p", "2", SubscriptBox["n", "2"]]]], "]"]], "\[Equal]", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["p", "1"], ",", SubscriptBox["n", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["p", "2"], ",", SubscriptBox["n", "2"]]], "}"]]]], "}"]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["p", "k"], "\[Element]", "Primes"]], "\[And]", RowBox[List[SubscriptBox["n", "k"], "\[Element]", "Integers"]], "\[And]", RowBox[List[SubscriptBox["n", "k"], ">", "0"]], "\[And]", RowBox[List["k", "\[Element]", RowBox[List["{", RowBox[List["1", ",", "2"]], "}"]]]], "\[And]", RowBox[List[SubscriptBox["p", "1"], "<", SubscriptBox["p", "2"]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> factors </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msubsup> <mi> p </mi> <mn> 1 </mn> <msub> <mi> n </mi> <mn> 1 </mn> </msub> </msubsup> <mo> ⁢ </mo> <msubsup> <mi> p </mi> <mn> 2 </mn> <msub> <mi> n </mi> <mn> 2 </mn> </msub> </msubsup> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <msub> <mi> p </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> n </mi> <mn> 1 </mn> </msub> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <msub> <mi> p </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> n </mi> <mn> 2 </mn> </msub> </mrow> <mo> } </mo> </mrow> </mrow> <mo> } </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <msub> <mi> p </mi> <mi> k </mi> </msub> <mo> ∈ </mo> <semantics> <mi> ℙ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalP]", Function[Primes]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> n </mi> <mi> k </mi> </msub> <mo> ∈ </mo> <msup> <semantics> <mi> ℕ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalN]", Function[Integers]] </annotation> </semantics> <mo> + </mo> </msup> </mrow> <mo> ∧ </mo> <mrow> <mi> k </mi> <mo> ∈ </mo> <mrow> <mo> { </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> <mo> } </mo> </mrow> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> p </mi> <mn> 1 </mn> </msub> <mo> < </mo> <msub> <mi> p </mi> <mn> 2 </mn> </msub> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> factors </ci> <apply> <times /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> p </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> p </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <list> <list> <apply> <ci> Subscript </ci> <ci> p </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> p </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> </list> </list> </apply> <apply> <and /> <apply> <in /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> k </ci> </apply> <primes /> </apply> <apply> <in /> <apply> <ci> Subscript </ci> <ci> n </ci> <ci> k </ci> </apply> <apply> <ci> SuperPlus </ci> <integers /> </apply> </apply> <apply> <in /> <ci> k </ci> <list> <cn type='integer'> 1 </cn> <cn type='integer'> 2 </cn> </list> </apply> <apply> <lt /> <apply> <ci> Subscript </ci> <ci> p </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> p </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["FactorInteger", "[", RowBox[List[SubsuperscriptBox["p_", "1", SubscriptBox["n_", "1"]], " ", SubsuperscriptBox["p_", "2", SubscriptBox["n_", "2"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["pp", "1"], ",", SubscriptBox["nn", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["pp", "2"], ",", SubscriptBox["nn", "2"]]], "}"]]]], "}"]], "/;", RowBox[List[RowBox[List[SubscriptBox["p", "k"], "\[Element]", "Primes"]], "&&", RowBox[List[SubscriptBox["n", "k"], "\[Element]", "Integers"]], "&&", RowBox[List[SubscriptBox["n", "k"], ">", "0"]], "&&", RowBox[List["k", "\[Element]", RowBox[List["{", RowBox[List["1", ",", "2"]], "}"]]]], "&&", RowBox[List[SubscriptBox["pp", "1"], "<", SubscriptBox["pp", "2"]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|