|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/13.04.06.0012.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PrimePi[x] == R[x] + Sum[R[Subscript[\[Rho], k]], {Subscript[\[Rho], k],
-Infinity, Infinity}] /;
R[x] == Sum[(MoebiusMu[k] LogIntegral[x^(1/k)])/k, {k, 1, Infinity}] ==
1 + Sum[Log[x]^k/(k Zeta[k + 1] k!), {k, 1, Infinity}] &&
Zeta[Subscript[\[Rho], k]] == 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["PrimePi", "[", "x", "]"]], "\[Equal]", RowBox[List[RowBox[List["R", "[", "x", "]"]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["\[Rho]", "k"], "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List["R", "[", SubscriptBox["\[Rho]", "k"], "]"]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["R", "[", "x", "]"]], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["MoebiusMu", "[", "k", "]"]], " ", RowBox[List["LogIntegral", "[", SuperscriptBox["x", RowBox[List["1", "/", "k"]]], "]"]]]], "k"]]], "\[Equal]", RowBox[List["1", "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[SuperscriptBox[RowBox[List["Log", "[", "x", "]"]], "k"], RowBox[List["k", " ", RowBox[List["Zeta", "[", RowBox[List["k", "+", "1"]], "]"]], " ", RowBox[List["k", "!"]]]]]]]]]]], "\[And]", RowBox[List[RowBox[List["Zeta", "[", SubscriptBox["\[Rho]", "k"], "]"]], "\[Equal]", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <semantics> <mi> π </mi> <annotation encoding='Mathematica'> TagBox["\[Pi]", PrimePi] </annotation> </semantics> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mi> R </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <msub> <mi> ρ </mi> <mi> k </mi> </msub> <mo> = </mo> <mrow> <mo> - </mo> <mi> ∞ </mi> </mrow> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mi> R </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> ρ </mi> <mi> k </mi> </msub> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mi> R </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> ∞ </mi> </munderover> <mfrac> <mrow> <mrow> <semantics> <mi> μ </mi> <annotation encoding='Mathematica'> TagBox["\[Mu]", MoebiusMu] </annotation> </semantics> <mo> ( </mo> <mi> k </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> li </mi> <mo> ⁡ </mo> <mo> ( </mo> <msup> <mi> x </mi> <mrow> <mn> 1 </mn> <mo> / </mo> <mi> k </mi> </mrow> </msup> <mo> ) </mo> </mrow> </mrow> <mi> k </mi> </mfrac> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> ∞ </mi> </munderover> <mfrac> <mrow> <msup> <mi> log </mi> <mi> k </mi> </msup> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox[RowBox[List["k", "+", "1"]], Rule[Editable, True]], ")"]], InterpretTemplate[Function[$CellContext`e, Zeta[$CellContext`e]]]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ∧ </mo> <mrow> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> ρ </mi> <mi> k </mi> </msub> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox[SubscriptBox["\[Rho]", "k"], Rule[Editable, True]], ")"]], InterpretTemplate[Function[$CellContext`e, Zeta[$CellContext`e]]]] </annotation> </semantics> <mo> ⩵ </mo> <mn> 0 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> PrimePi </ci> <ci> x </ci> </apply> <apply> <plus /> <apply> <ci> R </ci> <ci> x </ci> </apply> <apply> <sum /> <bvar> <apply> <ci> ZetaZero </ci> <ci> k </ci> </apply> </bvar> <lowlimit> <apply> <times /> <cn type='integer'> -1 </cn> <infinity /> </apply> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <ci> R </ci> <apply> <ci> ZetaZero </ci> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <apply> <ci> R </ci> <ci> x </ci> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <ci> MoebiusMu </ci> <ci> k </ci> </apply> <apply> <ci> LogIntegral </ci> <apply> <power /> <ci> x </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <apply> <ln /> <ci> x </ci> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <ci> k </ci> <apply> <ci> Zeta </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <factorial /> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <eq /> <apply> <ci> Zeta </ci> <apply> <ci> ZetaZero </ci> <ci> k </ci> </apply> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["PrimePi", "[", "x_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["R", "[", "x", "]"]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["\[Rho]", "k"], "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List["R", "[", SubscriptBox["\[Rho]", "k"], "]"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["R", "[", "x", "]"]], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["MoebiusMu", "[", "k", "]"]], " ", RowBox[List["LogIntegral", "[", SuperscriptBox["x", RowBox[List["1", "/", "k"]]], "]"]]]], "k"]]], "\[Equal]", RowBox[List["1", "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[SuperscriptBox[RowBox[List["Log", "[", "x", "]"]], "k"], RowBox[List["k", " ", RowBox[List["Zeta", "[", RowBox[List["k", "+", "1"]], "]"]], " ", RowBox[List["k", "!"]]]]]]]]]]], "&&", RowBox[List[RowBox[List["Zeta", "[", SubscriptBox["\[Rho]", "k"], "]"]], "\[Equal]", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|