|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/13.13.06.0001.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
RamanujanTau[n] == n^4 DivisorSigma[1, n] -
24 Sum[(35 k^4 - 52 k^3 n + 18 k^2 n^2) DivisorSigma[1, k]
DivisorSigma[1, n - k], {k, 1, n - 1}] /; n > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["RamanujanTau", "[", "n", "]"]], "\[Equal]", RowBox[List[RowBox[List[SuperscriptBox["n", "4"], RowBox[List["DivisorSigma", "[", RowBox[List["1", ",", "n"]], "]"]]]], "-", RowBox[List["24", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], RowBox[List["n", "-", "1"]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["35", SuperscriptBox["k", "4"]]], "-", RowBox[List["52", SuperscriptBox["k", "3"], "n"]], "+", RowBox[List["18", SuperscriptBox["k", "2"], SuperscriptBox["n", "2"]]]]], ")"]], RowBox[List["DivisorSigma", "[", RowBox[List["1", ",", "k"]], "]"]], RowBox[List["DivisorSigma", "[", RowBox[List["1", ",", RowBox[List["n", "-", "k"]]]], "]"]]]]]]]]]]]], "/;", RowBox[List["n", ">", "0"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <semantics> <mi> τ </mi> <annotation encoding='Mathematica'> TagBox["\[Tau]", RamanujanTau] </annotation> </semantics> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> <mo>  </mo> <mrow> <mrow> <msup> <mi> n </mi> <mn> 4 </mn> </msup> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> σ </mi> <annotation encoding='Mathematica'> TagBox["\[Sigma]", DivisorSigma] </annotation> </semantics> <mn> 1 </mn> </msub> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 35 </mn> <mo> ⁢ </mo> <msup> <mi> k </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 52 </mn> <mo> ⁢ </mo> <mi> n </mi> <mo> ⁢ </mo> <msup> <mi> k </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 18 </mn> <mo> ⁢ </mo> <msup> <mi> n </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> k </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> σ </mi> <annotation encoding='Mathematica'> TagBox["\[Sigma]", DivisorSigma] </annotation> </semantics> <mn> 1 </mn> </msub> <mo> ( </mo> <mi> k </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> σ </mi> <annotation encoding='Mathematica'> TagBox["\[Sigma]", DivisorSigma] </annotation> </semantics> <mn> 1 </mn> </msub> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> > </mo> <mn> 0 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> RamanujanTau </ci> <ci> n </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> n </ci> <cn type='integer'> 4 </cn> </apply> <apply> <ci> DivisorSigma </ci> <cn type='integer'> 1 </cn> <ci> n </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 24 </cn> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 35 </cn> <apply> <power /> <ci> k </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 52 </cn> <ci> n </ci> <apply> <power /> <ci> k </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 18 </cn> <apply> <power /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <ci> DivisorSigma </ci> <cn type='integer'> 1 </cn> <ci> k </ci> </apply> <apply> <ci> DivisorSigma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <gt /> <ci> n </ci> <cn type='integer'> 0 </cn> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["RamanujanTau", "[", "n_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["n", "4"], " ", RowBox[List["DivisorSigma", "[", RowBox[List["1", ",", "n"]], "]"]]]], "-", RowBox[List["24", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], RowBox[List["n", "-", "1"]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["35", " ", SuperscriptBox["k", "4"]]], "-", RowBox[List["52", " ", SuperscriptBox["k", "3"], " ", "n"]], "+", RowBox[List["18", " ", SuperscriptBox["k", "2"], " ", SuperscriptBox["n", "2"]]]]], ")"]], " ", RowBox[List["DivisorSigma", "[", RowBox[List["1", ",", "k"]], "]"]], " ", RowBox[List["DivisorSigma", "[", RowBox[List["1", ",", RowBox[List["n", "-", "k"]]]], "]"]]]]]]]]]], "/;", RowBox[List["n", ">", "0"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|