|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/13.13.17.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
RamanujanTau[Subscript[p, j]^n] == Sum[(-1)^k Binomial[n - k, n - 2 k]
Subscript[p, j]^(11 k) RamanujanTau[Subscript[p, j]]^(n - 2 k),
{k, 0, Floor[n/2]}] /; Element[Subscript[p, j], Primes]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["RamanujanTau", "[", SubsuperscriptBox["p", "j", "n"], "]"]], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", FractionBox["n", "2"], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], RowBox[List["Binomial", "[", RowBox[List[RowBox[List["n", "-", "k"]], ",", RowBox[List["n", "-", RowBox[List["2", "k"]]]]]], "]"]], SubsuperscriptBox["p", "j", RowBox[List["11", "k"]]], SuperscriptBox[RowBox[List["RamanujanTau", "[", SubscriptBox["p", "j"], "]"]], RowBox[List["n", "-", RowBox[List["2", "k"]]]]]]]]]]], "/;", RowBox[List[SubscriptBox["p", "j"], "\[Element]", "Primes"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <semantics> <mi> τ </mi> <annotation encoding='Mathematica'> TagBox["\[Tau]", RamanujanTau] </annotation> </semantics> <mo> ( </mo> <msubsup> <mi> p </mi> <mi> j </mi> <mi> n </mi> </msubsup> <mo> ) </mo> </mrow> <mo>  </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> ⌊ </mo> <mfrac> <mi> n </mi> <mn> 2 </mn> </mfrac> <mo> ⌋ </mo> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi> n </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["n", "-", "k"]], Identity, Rule[Editable, True], Rule[Selectable, True]]], List[TagBox[RowBox[List["n", "-", RowBox[List["2", " ", "k"]]]], Identity, Rule[Editable, True], Rule[Selectable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> ⁢ </mo> <msubsup> <mi> p </mi> <mi> j </mi> <mrow> <mn> 11 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </msubsup> <mo> ⁢ </mo> <msup> <mrow> <semantics> <mi> τ </mi> <annotation encoding='Mathematica'> TagBox["\[Tau]", RamanujanTau] </annotation> </semantics> <mo> ( </mo> <msub> <mi> p </mi> <mi> j </mi> </msub> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> </msup> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <msub> <mi> p </mi> <mi> j </mi> </msub> <mo> ∈ </mo> <semantics> <mi> ℙ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalP]", Function[List[], Primes]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> RamanujanTau </ci> <apply> <power /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> </apply> <ci> n </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <ci> Binomial </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> 11 </cn> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <ci> RamanujanTau </ci> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> </apply> </apply> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> </apply> <primes /> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["RamanujanTau", "[", SubsuperscriptBox["p_", "j", "n_"], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", FractionBox["n", "2"], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List["n", "-", "k"]], ",", RowBox[List["n", "-", RowBox[List["2", " ", "k"]]]]]], "]"]], " ", SubsuperscriptBox["p", "j", RowBox[List["11", " ", "k"]]], " ", SuperscriptBox[RowBox[List["RamanujanTau", "[", SubscriptBox["p", "j"], "]"]], RowBox[List["n", "-", RowBox[List["2", " ", "k"]]]]]]]]], "/;", RowBox[List[SubscriptBox["p", "j"], "\[Element]", "Primes"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|