|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/05.09.04.0005.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Singularities[GegenbauerC[n, \[Lambda], z], \[Lambda]] ==
{SequenceList[{-((n + j)/2), 1}, Element[j, Integers] && j >= 0],
{ComplexInfinity, Infinity}}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Singularities", "[", RowBox[List[RowBox[List["GegenbauerC", "[", RowBox[List["n", ",", "\[Lambda]", ",", "z"]], "]"]], ",", "\[Lambda]"]], "]"]], "\[Equal]", RowBox[List["{", RowBox[List[RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["n", "+", "j"]], "2"]]], ",", "1"]], "}"]], ",", RowBox[List[RowBox[List["j", "\[Element]", "Integers"]], "\[And]", RowBox[List["j", "\[GreaterEqual]", "0"]]]]]], "]"]], ",", RowBox[List["{", RowBox[List["ComplexInfinity", ",", "\[Infinity]"]], "}"]]]], "}"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <mi> 𝒮𝒾𝓃ℊ </mi> <mi> λ </mi> </msub> <mo> ( </mo> <mrow> <msubsup> <mi> C </mi> <mi> n </mi> <mi> λ </mi> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> n </mi> <mo> + </mo> <mi> j </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mi> j </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <mover> <mi> ∞ </mi> <mo> ~ </mo> </mover> <mo> , </mo> <mi> ∞ </mi> </mrow> <mo> } </mo> </mrow> </mrow> <mo> } </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <apply> <ci> Subscript </ci> <ci> 𝒮𝒾𝓃ℊ </ci> <ci> λ </ci> </apply> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> C </ci> <ci> n </ci> </apply> <ci> λ </ci> </apply> <ci> z </ci> </apply> </apply> <list> <list> <apply> <ci> Condition </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> n </ci> <ci> j </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </list> <apply> <in /> <ci> j </ci> <ci> ℕ </ci> </apply> </apply> </list> <list> <apply> <ci> OverTilde </ci> <infinity /> </apply> <infinity /> </list> </list> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Singularities", "[", RowBox[List[RowBox[List["GegenbauerC", "[", RowBox[List["n_", ",", "\[Lambda]_", ",", "z_"]], "]"]], ",", "\[Lambda]_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["{", RowBox[List[RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["n", "+", "j"]], ")"]]]], ",", "1"]], "}"]], ",", RowBox[List[RowBox[List["j", "\[Element]", "Integers"]], "&&", RowBox[List["j", "\[GreaterEqual]", "0"]]]]]], "]"]], ",", RowBox[List["{", RowBox[List["ComplexInfinity", ",", "\[Infinity]"]], "}"]]]], "}"]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|