|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/05.09.13.0009.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Derivative[2][w][z] - (Log[r] + (a^2 r^(2 z) (1 + 2 \[Lambda]) Log[r])/
(1 - a^2 r^(2 z)) + 2 Log[s]) Derivative[1][w][z] +
((1/(-1 + a^2 r^(2 z))) ((-Log[s]) (Log[r] + Log[s]) +
a^2 r^(2 z) (n Log[r] + Log[s]) ((-(2 \[Lambda] + n)) Log[r] +
Log[s]))) w[z] == 0 /;
w[z] == Subscript[c, 1] s^z GegenbauerC[n, \[Lambda], a r^z] +
Subscript[c, 2] s^z (1 - a^2 r^(2 z))^((1 - 2 \[Lambda])/4)
LegendreQ[n + \[Lambda] - 1/2, 1/2 - \[Lambda], 2, a r^z]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "r", "]"]], "+", FractionBox[RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["r", RowBox[List["2", " ", "z"]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Lambda]"]]]], ")"]], " ", RowBox[List["Log", "[", "r", "]"]]]], RowBox[List["1", "-", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["r", RowBox[List["2", " ", "z"]]]]]]]], "+", RowBox[List["2", " ", RowBox[List["Log", "[", "s", "]"]]]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List[RowBox[List[FractionBox["1", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["r", RowBox[List["2", " ", "z"]]]]]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["Log", "[", "s", "]"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "r", "]"]], "+", RowBox[List["Log", "[", "s", "]"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["r", RowBox[List["2", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["n", " ", RowBox[List["Log", "[", "r", "]"]]]], "+", RowBox[List["Log", "[", "s", "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "n"]], ")"]]]], " ", RowBox[List["Log", "[", "r", "]"]]]], "+", RowBox[List["Log", "[", "s", "]"]]]], ")"]]]]]], ")"]]]], " ", RowBox[List["w", "[", "z", "]"]]]]]], "\[Equal]", "0"]], "/;", " ", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["c", "1"], SuperscriptBox["s", "z"], RowBox[List["GegenbauerC", "[", RowBox[List["n", ",", "\[Lambda]", ",", RowBox[List["a", " ", SuperscriptBox["r", "z"]]]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "2"], SuperscriptBox["s", "z"], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List[SuperscriptBox["a", "2"], SuperscriptBox["r", RowBox[List["2", "z"]]]]]]], ")"]], FractionBox[RowBox[List["1", "-", RowBox[List["2", "\[Lambda]"]]]], "4"]], " ", RowBox[List["LegendreQ", "[", RowBox[List[RowBox[List["n", "+", "\[Lambda]", "-", FractionBox["1", "2"]]], ",", RowBox[List[FractionBox["1", "2"], " ", "-", "\[Lambda]"]], ",", "2", ",", RowBox[List["a", " ", SuperscriptBox["r", "z"]]]]], "]"]]]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <msup> <mi> w </mi> <mi> ′′ </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> λ </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> r </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> r </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> r </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> </mfrac> <mo> + </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> r </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> w </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> r </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> n </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> r </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> λ </mi> </mrow> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> r </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> r </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> r </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo>  </mo> <mn> 0 </mn> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo>  </mo> <mrow> <mrow> <msub> <mi> c </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <msup> <mi> s </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <mrow> <msubsup> <mi> C </mi> <mi> n </mi> <mi> λ </mi> </msubsup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> r </mi> <mi> z </mi> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msub> <mi> c </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <msup> <mi> s </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> r </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> λ </mi> </mrow> </mrow> <mn> 4 </mn> </mfrac> </msup> <mo> ⁢ </mo> <mrow> <msubsup> <semantics> <mi> Q </mi> <annotation encoding='Mathematica'> TagBox["Q", LegendreQ] </annotation> </semantics> <mrow> <mi> λ </mi> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> λ </mi> </mrow> </msubsup> <mo> ( </mo> <semantics> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> r </mi> <mi> z </mi> </msup> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["a", " ", SuperscriptBox["r", "z"]]], HoldComplete[LegendreQ, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <plus /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> λ </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <ln /> <ci> r </ci> </apply> <apply> <power /> <ci> r </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> r </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ln /> <ci> r </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ln /> <ci> s </ci> </apply> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> r </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> n </ci> <apply> <ln /> <ci> r </ci> </apply> </apply> <apply> <ln /> <ci> s </ci> </apply> </apply> <apply> <plus /> <apply> <ln /> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> λ </ci> </apply> <ci> n </ci> </apply> <apply> <ln /> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ln /> <ci> s </ci> </apply> <apply> <plus /> <apply> <ln /> <ci> r </ci> </apply> <apply> <ln /> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> r </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <eq /> <apply> <ci> w </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <ci> s </ci> <ci> z </ci> </apply> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> C </ci> <ci> n </ci> </apply> <ci> λ </ci> </apply> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> r </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> s </ci> <ci> z </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> r </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> λ </ci> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> LegendreQ </ci> <apply> <plus /> <ci> λ </ci> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> λ </ci> </apply> </apply> <cn type='integer'> 2 </cn> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> r </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "r_", "]"]], "+", FractionBox[RowBox[List[SuperscriptBox["a_", "2"], " ", SuperscriptBox["r_", RowBox[List["2", " ", "z_"]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Lambda]_"]]]], ")"]], " ", RowBox[List["Log", "[", "r_", "]"]]]], RowBox[List["1", "-", RowBox[List[SuperscriptBox["a_", "2"], " ", SuperscriptBox["r_", RowBox[List["2", " ", "z_"]]]]]]]], "+", RowBox[List["2", " ", RowBox[List["Log", "[", "s_", "]"]]]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["Log", "[", "s_", "]"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "r_", "]"]], "+", RowBox[List["Log", "[", "s_", "]"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["a_", "2"], " ", SuperscriptBox["r_", RowBox[List["2", " ", "z_"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["n_", " ", RowBox[List["Log", "[", "r_", "]"]]]], "+", RowBox[List["Log", "[", "s_", "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Lambda]_"]], "+", "n_"]], ")"]]]], " ", RowBox[List["Log", "[", "r_", "]"]]]], "+", RowBox[List["Log", "[", "s_", "]"]]]], ")"]]]]]], ")"]], " ", RowBox[List["w", "[", "z_", "]"]]]], RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List[SuperscriptBox["a_", "2"], " ", SuperscriptBox["r_", RowBox[List["2", " ", "z_"]]]]]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["0", "/;", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["c", "1"], " ", SuperscriptBox["s", "z"], " ", RowBox[List["GegenbauerC", "[", RowBox[List["n", ",", "\[Lambda]", ",", RowBox[List["a", " ", SuperscriptBox["r", "z"]]]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "2"], " ", SuperscriptBox["s", "z"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["r", RowBox[List["2", " ", "z"]]]]]]], ")"]], RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "\[Lambda]"]]]], ")"]]]]], " ", RowBox[List["LegendreQ", "[", RowBox[List[RowBox[List["n", "+", "\[Lambda]", "-", FractionBox["1", "2"]]], ",", RowBox[List[FractionBox["1", "2"], "-", "\[Lambda]"]], ",", "2", ",", RowBox[List["a", " ", SuperscriptBox["r", "z"]]]]], "]"]]]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|