Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
GegenbauerC






Mathematica Notation

Traditional Notation









Polynomials > GegenbauerC[n,lambda,z] > Transformations > Addition formulas





http://functions.wolfram.com/05.09.16.0004.01









  


  










Input Form





GegenbauerC[n, \[Alpha], Cos[Subscript[\[Theta], 0]]] == Sum[(((Pochhammer[\[Alpha], k] (n - k)!) Sin[\[Theta]]^k Sin[\[CurlyTheta]]^k)/(Pochhammer[\[Alpha] - 1/2, k] Pochhammer[2 \[Alpha] + 2 k, n - k])) GegenbauerC[n - k, \[Alpha] + k, Cos[\[Theta]]] GegenbauerC[n - k, \[Alpha] + k, Cos[\[CurlyTheta]]] GegenbauerC[k, \[Alpha] - 1/2, Cos[\[Phi]]], {k, 0, n}] /; Element[n, Integers] && n >= 0 && Cos[Subscript[\[Theta], 0]] == Cos[\[Theta]] Cos[\[CurlyTheta]] + Sin[\[Theta]] Sin[\[CurlyTheta]] Cos[\[Phi]]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["GegenbauerC", "[", RowBox[List["n", ",", "\[Alpha]", ",", RowBox[List["Cos", "[", SubscriptBox["\[Theta]", "0"], "]"]]]], "]"]], "\[Equal]", RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List["\[Alpha]", ",", "k"]], "]"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "k"]], ")"]], "!"]]]], ")"]], " ", SuperscriptBox[RowBox[List["Sin", "[", "\[Theta]", "]"]], "k"], " ", SuperscriptBox[RowBox[List["Sin", "[", "\[CurlyTheta]", "]"]], "k"]]], RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["\[Alpha]", "-", FractionBox["1", "2"]]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[RowBox[List["2", " ", "\[Alpha]"]], "+", RowBox[List["2", " ", "k"]]]], ",", RowBox[List["n", "-", "k"]]]], "]"]]]]], "\n", RowBox[List["GegenbauerC", "[", RowBox[List[RowBox[List["n", "-", "k"]], ",", RowBox[List["\[Alpha]", "+", "k"]], ",", RowBox[List["Cos", "[", "\[Theta]", "]"]]]], "]"]], " ", RowBox[List["GegenbauerC", "[", RowBox[List[RowBox[List["n", "-", "k"]], ",", RowBox[List["\[Alpha]", "+", "k"]], ",", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]], "]"]], " ", RowBox[List["GegenbauerC", "[", RowBox[List["k", ",", RowBox[List["\[Alpha]", "-", FractionBox["1", "2"]]], ",", RowBox[List["Cos", "[", "\[Phi]", "]"]]]], "]"]]]]]], ")"]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List[RowBox[List["Cos", "[", SubscriptBox["\[Theta]", "0"], "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["Cos", "[", "\[Theta]", "]"]], " ", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]], "+", RowBox[List[RowBox[List["Sin", "[", "\[Theta]", "]"]], " ", RowBox[List["Sin", "[", "\[CurlyTheta]", "]"]], " ", RowBox[List["Cos", "[", "\[Phi]", "]"]]]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='StandardForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mi> C </mi> <mi> n </mi> <mi> &#945; </mi> </msubsup> <mo> ( </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> &#952; </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mi> &#945; </mi> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, &quot;\[Alpha]&quot;, &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> &#945; </mi> <mo> - </mo> <mrow> <mn> 1 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;\[Alpha]&quot;, &quot;-&quot;, RowBox[List[&quot;1&quot;, &quot;/&quot;, &quot;2&quot;]]]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#945; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;k&quot;]], &quot;+&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Alpha]&quot;]]]], &quot;)&quot;]], RowBox[List[&quot;n&quot;, &quot;-&quot;, &quot;k&quot;]]], Pochhammer] </annotation> </semantics> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mi> k </mi> </msup> <mo> ( </mo> <mi> &#952; </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mi> k </mi> </msup> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> &#8290; </mo> <mtext> </mtext> <mrow> <mrow> <mrow> <msubsup> <mi> C </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> </mrow> <mrow> <mi> &#945; </mi> <mo> + </mo> <mi> k </mi> </mrow> </msubsup> <mo> ( </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#952; </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msubsup> <mi> C </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> </mrow> <mrow> <mi> &#945; </mi> <mo> + </mo> <mi> k </mi> </mrow> </msubsup> <mo> ( </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msubsup> <mi> C </mi> <mi> k </mi> <mrow> <mi> &#945; </mi> <mo> - </mo> <mrow> <mn> 1 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </mrow> </msubsup> <mo> ( </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#981; </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> n </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> &#952; </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#952; </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#981; </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#952; </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <times /> <apply> <eq /> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> C </ci> <ci> n </ci> </apply> <ci> &#945; </ci> </apply> <apply> <cos /> <apply> <ci> Subscript </ci> <ci> &#952; </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <ci> &#945; </ci> <ci> k </ci> </apply> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> &#945; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <sin /> <ci> &#952; </ci> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <sin /> <ci> &#977; </ci> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <ci> Condition </ci> <apply> <times /> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> C </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <plus /> <ci> &#945; </ci> <ci> k </ci> </apply> </apply> <apply> <cos /> <ci> &#952; </ci> </apply> </apply> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> C </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <plus /> <ci> &#945; </ci> <ci> k </ci> </apply> </apply> <apply> <cos /> <ci> &#977; </ci> </apply> </apply> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> C </ci> <ci> k </ci> </apply> <apply> <plus /> <ci> &#945; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <cos /> <ci> &#981; </ci> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> n </ci> <ci> &#8469; </ci> </apply> <apply> <eq /> <apply> <cos /> <apply> <ci> Subscript </ci> <ci> &#952; </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <cos /> <ci> &#952; </ci> </apply> <apply> <cos /> <ci> &#977; </ci> </apply> </apply> <apply> <times /> <apply> <cos /> <ci> &#981; </ci> </apply> <apply> <sin /> <ci> &#952; </ci> </apply> <apply> <sin /> <ci> &#977; </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["GegenbauerC", "[", RowBox[List["n_", ",", "\[Alpha]_", ",", RowBox[List["Cos", "[", SubscriptBox["\[Theta]_", "0"], "]"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List["\[Alpha]", ",", "k"]], "]"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "k"]], ")"]], "!"]]]], ")"]], " ", SuperscriptBox[RowBox[List["Sin", "[", "\[Theta]", "]"]], "k"], " ", SuperscriptBox[RowBox[List["Sin", "[", "\[CurlyTheta]", "]"]], "k"]]], ")"]], " ", RowBox[List["GegenbauerC", "[", RowBox[List[RowBox[List["n", "-", "k"]], ",", RowBox[List["\[Alpha]", "+", "k"]], ",", RowBox[List["Cos", "[", "\[Theta]", "]"]]]], "]"]], " ", RowBox[List["GegenbauerC", "[", RowBox[List[RowBox[List["n", "-", "k"]], ",", RowBox[List["\[Alpha]", "+", "k"]], ",", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]], "]"]], " ", RowBox[List["GegenbauerC", "[", RowBox[List["k", ",", RowBox[List["\[Alpha]", "-", FractionBox["1", "2"]]], ",", RowBox[List["Cos", "[", "\[Phi]", "]"]]]], "]"]]]], RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["\[Alpha]", "-", FractionBox["1", "2"]]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[RowBox[List["2", " ", "\[Alpha]"]], "+", RowBox[List["2", " ", "k"]]]], ",", RowBox[List["n", "-", "k"]]]], "]"]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]], "&&", RowBox[List[RowBox[List["Cos", "[", SubscriptBox["\[Theta]", "0"], "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["Cos", "[", "\[Theta]", "]"]], " ", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]], "+", RowBox[List[RowBox[List["Sin", "[", "\[Theta]", "]"]], " ", RowBox[List["Sin", "[", "\[CurlyTheta]", "]"]], " ", RowBox[List["Cos", "[", "\[Phi]", "]"]]]]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18