Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
GegenbauerC






Mathematica Notation

Traditional Notation









Polynomials > GegenbauerC[n,lambda,z] > Summation > Finite summation





http://functions.wolfram.com/05.09.23.0001.01









  


  










Input Form





Sum[((Gamma[n - k + 1] Gamma[k + \[Lambda]]^2 (2 k + 2 \[Lambda] - 1) (-1)^k 4^k)/Gamma[k + n + 2 \[Lambda]]) (Subscript[z, 1]^2 - 1)^(k/2) (Subscript[z, 2]^2 - 1)^(k/2) GegenbauerC[n - k, k + \[Lambda], Subscript[z, 1]] GegenbauerC[n - k, k + \[Lambda], Subscript[z, 2]] GegenbauerC[k, \[Lambda] - 1/2, \[Alpha]], {k, 0, n}] == ((4^(1 - \[Lambda]) Sqrt[Pi] Gamma[\[Lambda]])/Gamma[\[Lambda] - 1/2]) GegenbauerC[n, \[Lambda], Subscript[z, 1] Subscript[z, 2] - Sqrt[Subscript[z, 1]^2 - 1] Sqrt[Subscript[z, 2]^2 - 1] \[Alpha]]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", RowBox[List["n", "-", "k", "+", "1"]], "]"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", RowBox[List["k", "+", "\[Lambda]"]], "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", RowBox[List["2", " ", "\[Lambda]"]], "-", "1"]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox["4", "k"]]], RowBox[List["Gamma", "[", RowBox[List["k", "+", "n", "+", RowBox[List["2", " ", "\[Lambda]"]]]], "]"]]], SuperscriptBox[RowBox[List["(", RowBox[List[SubsuperscriptBox["z", "1", "2"], "-", "1"]], ")"]], RowBox[List["k", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SubsuperscriptBox["z", "2", "2"], "-", "1"]], ")"]], RowBox[List["k", "/", "2"]]], RowBox[List["GegenbauerC", "[", RowBox[List[RowBox[List["n", "-", "k"]], ",", RowBox[List["k", "+", "\[Lambda]"]], ",", " ", SubscriptBox["z", "1"]]], "]"]], RowBox[List["GegenbauerC", "[", RowBox[List[RowBox[List["n", "-", "k"]], ",", RowBox[List["k", "+", "\[Lambda]"]], ",", " ", SubscriptBox["z", "2"]]], "]"]], RowBox[List["GegenbauerC", "[", RowBox[List["k", ",", RowBox[List["\[Lambda]", "-", FractionBox["1", "2"]]], ",", "\[Alpha]"]], "]"]]]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["4", RowBox[List["1", "-", "\[Lambda]"]]], " ", SqrtBox["\[Pi]"], RowBox[List["Gamma", "[", "\[Lambda]", "]"]]]], RowBox[List["Gamma", "[", RowBox[List["\[Lambda]", "-", RowBox[List["1", "/", "2"]]]], "]"]]], RowBox[List["GegenbauerC", "[", RowBox[List["n", ",", "\[Lambda]", ",", RowBox[List[RowBox[List[SubscriptBox["z", "1"], " ", SubscriptBox["z", "2"]]], "-", RowBox[List[SqrtBox[RowBox[List[SubsuperscriptBox["z", "1", "2"], "-", "1"]]], " ", SqrtBox[RowBox[List[SubsuperscriptBox["z", "2", "2"], "-", "1"]]], " ", "\[Alpha]"]]]]]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <msup> <mn> 4 </mn> <mi> k </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> &#955; </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> n </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msubsup> <mi> z </mi> <mn> 1 </mn> <mn> 2 </mn> </msubsup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msubsup> <mi> z </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <msubsup> <mi> C </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mi> &#955; </mi> </mrow> </msubsup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msubsup> <mi> C </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mi> &#955; </mi> </mrow> </msubsup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msubsup> <mi> C </mi> <mi> k </mi> <mrow> <mi> &#955; </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msubsup> <mo> ( </mo> <mi> &#945; </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <msup> <mn> 4 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#955; </mi> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#955; </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#955; </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <mi> C </mi> <mi> n </mi> <mi> &#955; </mi> </msubsup> <mo> ( </mo> <mrow> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> - </mo> <mrow> <msqrt> <mrow> <msubsup> <mi> z </mi> <mn> 1 </mn> <mn> 2 </mn> </msubsup> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <msubsup> <mi> z </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mi> &#945; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <ci> k </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> k </ci> <ci> &#955; </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> k </ci> <ci> n </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <ci> k </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <ci> k </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> C </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <plus /> <ci> k </ci> <ci> &#955; </ci> </apply> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> C </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <plus /> <ci> k </ci> <ci> &#955; </ci> </apply> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> C </ci> <ci> k </ci> </apply> <apply> <plus /> <ci> &#955; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <ci> &#945; </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 4 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#955; </ci> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Gamma </ci> <ci> &#955; </ci> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#955; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> C </ci> <ci> n </ci> </apply> <ci> &#955; </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> &#945; </ci> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k_", "=", "0"]], "n_"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["n_", "-", "k_", "+", "1"]], "]"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", RowBox[List["k_", "+", "\[Lambda]_"]], "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k_"]], "+", RowBox[List["2", " ", "\[Lambda]_"]], "-", "1"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k_"], " ", SuperscriptBox["4", "k_"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SubsuperscriptBox["z_", "1", "2"], "-", "1"]], ")"]], FractionBox["k_", "2"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SubsuperscriptBox["z_", "2", "2"], "-", "1"]], ")"]], FractionBox["k_", "2"]], " ", RowBox[List["GegenbauerC", "[", RowBox[List[RowBox[List["n_", "-", "k_"]], ",", RowBox[List["k_", "+", "\[Lambda]_"]], ",", SubscriptBox["z_", "1"]]], "]"]], " ", RowBox[List["GegenbauerC", "[", RowBox[List[RowBox[List["n_", "-", "k_"]], ",", RowBox[List["k_", "+", "\[Lambda]_"]], ",", SubscriptBox["z_", "2"]]], "]"]], " ", RowBox[List["GegenbauerC", "[", RowBox[List["k_", ",", RowBox[List["\[Lambda]_", "-", FractionBox["1", "2"]]], ",", "\[Alpha]_"]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["k_", "+", "n_", "+", RowBox[List["2", " ", "\[Lambda]_"]]]], "]"]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["4", RowBox[List["1", "-", "\[Lambda]"]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", "\[Lambda]", "]"]]]], ")"]], " ", RowBox[List["GegenbauerC", "[", RowBox[List["n", ",", "\[Lambda]", ",", RowBox[List[RowBox[List[SubscriptBox["zz", "1"], " ", SubscriptBox["zz", "2"]]], "-", RowBox[List[SqrtBox[RowBox[List[SubsuperscriptBox["zz", "1", "2"], "-", "1"]]], " ", SqrtBox[RowBox[List[SubsuperscriptBox["zz", "2", "2"], "-", "1"]]], " ", "\[Alpha]"]]]]]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["\[Lambda]", "-", FractionBox["1", "2"]]], "]"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29