|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/05.09.27.0001.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
GegenbauerC[n, \[Lambda], z] ==
((2^(1/2 - \[Lambda]) Sqrt[Pi] Gamma[2 \[Lambda] + n])/
(Gamma[n + 1] Gamma[\[Lambda]])) (1 - z^2)^((2 \[Lambda] - 1)/4)
LegendreP[\[Lambda] + n - 1/2, 1/2 - \[Lambda], 2, z]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["GegenbauerC", "[", RowBox[List["n", ",", "\[Lambda]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["1", "/", "2"]], "-", "\[Lambda]"]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "n"]], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List["n", "+", "1"]], "]"]], " ", RowBox[List["Gamma", "[", "\[Lambda]", "]"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["z", "2"]]], ")"]], FractionBox[RowBox[List[RowBox[List["2", "\[Lambda]"]], "-", "1"]], "4"]], " ", RowBox[List["LegendreP", "[", RowBox[List[RowBox[List["\[Lambda]", "+", "n", "-", FractionBox["1", "2"]]], ",", RowBox[List[FractionBox["1", "2"], "-", "\[Lambda]"]], ",", "2", ",", "z"]], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msubsup> <mi> C </mi> <mi> n </mi> <mi> λ </mi> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> λ </mi> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mi> Γ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> λ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mtext> </mtext> <mrow> <mi> Γ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> Γ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mi> λ </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> λ </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mfrac> </msup> <mo> ⁢ </mo> <mtext> </mtext> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox["P", LegendreP] </annotation> </semantics> <mrow> <mi> λ </mi> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> λ </mi> </mrow> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox["z", HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> C </ci> <ci> n </ci> </apply> <ci> λ </ci> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> λ </ci> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> Γ </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> λ </ci> </apply> </apply> <apply> <power /> <apply> <times /> <ci> Γ </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <ci> Γ </ci> <ci> λ </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> λ </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> LegendreP </ci> <apply> <plus /> <ci> λ </ci> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> λ </ci> </apply> </apply> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["GegenbauerC", "[", RowBox[List["n_", ",", "\[Lambda]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[FractionBox["1", "2"], "-", "\[Lambda]"]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "n"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["z", "2"]]], ")"]], RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "-", "1"]], ")"]]]]], " ", RowBox[List["LegendreP", "[", RowBox[List[RowBox[List["\[Lambda]", "+", "n", "-", FractionBox["1", "2"]]], ",", RowBox[List[FractionBox["1", "2"], "-", "\[Lambda]"]], ",", "2", ",", "z"]], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List["n", "+", "1"]], "]"]], " ", RowBox[List["Gamma", "[", "\[Lambda]", "]"]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|