Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
LegendreP






Mathematica Notation

Traditional Notation









Polynomials > LegendreP[n,z] > Specific values > Specialized values > For fixed n





http://functions.wolfram.com/05.03.03.0017.01









  


  










Input Form





Derivative[0, r][LegendreP][n, 0] == (KroneckerDelta[Sin[(n - r) (Pi/2)]] r! (-1)^((n - r)/2) Binomial[n + r, r] Binomial[n, (n + r)/2])/2^n /; Element[n, Integers] && n >= 0 && Element[r, Integers] && r >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[RowBox[List["Derivative", "[", " ", RowBox[List["0", ",", "r"]], "]"]], "[", "LegendreP", "]"]], "[", RowBox[List["n", ",", " ", "0"]], "]"]], " ", "\[Equal]", RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List["Sin", "[", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "r"]], ")"]], FractionBox["\[Pi]", "2"]]], "]"]], "]"]], RowBox[List["r", "!"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], FractionBox[RowBox[List["n", "-", "r"]], "2"]], SuperscriptBox["2", RowBox[List["-", "n"]]], RowBox[List["Binomial", "[", RowBox[List[RowBox[List["n", "+", "r"]], ",", "r"]], "]"]], RowBox[List["Binomial", "[", RowBox[List["n", ",", RowBox[List[RowBox[List["(", RowBox[List["n", "+", "r"]], ")"]], "/", "2"]]]], "]"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["r", "\[Element]", "Integers"]], "\[And]", RowBox[List["r", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mi> P </mi> <mi> n </mi> <semantics> <mrow> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mi> r </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;0&quot;, &quot;,&quot;, &quot;r&quot;]], &quot;)&quot;]], Derivative] </annotation> </semantics> </msubsup> <mo> ( </mo> <mn> 0 </mn> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <msub> <semantics> <mi> &#948; </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> r </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </msub> <mo> &#8290; </mo> <mrow> <mi> r </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mfrac> <mrow> <mi> n </mi> <mo> - </mo> <mi> r </mi> </mrow> <mn> 2 </mn> </mfrac> </msup> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mo> - </mo> <mi> n </mi> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mi> n </mi> <mo> + </mo> <mi> r </mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mi> r </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[RowBox[List[&quot;n&quot;, &quot;+&quot;, &quot;r&quot;]], Identity, Rule[Editable, True]]], List[TagBox[&quot;r&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> n </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mi> n </mi> <mo> + </mo> <mi> r </mi> </mrow> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;n&quot;, Identity, Rule[Editable, True]]], List[TagBox[FractionBox[RowBox[List[&quot;n&quot;, &quot;+&quot;, &quot;r&quot;]], &quot;2&quot;], Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> n </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mi> r </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 0 </cn> <ci> r </ci> </list> <apply> <ci> Subscript </ci> <ci> P </ci> <ci> n </ci> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <times /> <apply> <ci> KroneckerDelta </ci> <apply> <sin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> r </ci> </apply> </apply> <pi /> </apply> </apply> </apply> <apply> <factorial /> <ci> r </ci> </apply> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> r </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <ci> Binomial </ci> <apply> <plus /> <ci> n </ci> <ci> r </ci> </apply> <ci> r </ci> </apply> <apply> <ci> Binomial </ci> <ci> n </ci> <apply> <times /> <apply> <plus /> <ci> n </ci> <ci> r </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> n </ci> <ci> &#8469; </ci> </apply> <apply> <in /> <ci> r </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SuperscriptBox["LegendreP", TagBox[RowBox[List["(", RowBox[List["0", ",", "r"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["n_", ",", "0"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["n", "-", "r"]], ")"]], " ", "\[Pi]"]], "]"]], "]"]], " ", RowBox[List["r", "!"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], FractionBox[RowBox[List["n", "-", "r"]], "2"]], " ", SuperscriptBox["2", RowBox[List["-", "n"]]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List["n", "+", "r"]], ",", "r"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", FractionBox[RowBox[List["n", "+", "r"]], "2"]]], "]"]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]], "&&", RowBox[List["r", "\[Element]", "Integers"]], "&&", RowBox[List["r", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18