|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/05.03.17.0005.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
z p[n, z] == p[n + 1, z] + (n^2/(4 n^2 - 1)) p[n - 1, z] /;
p[n, z] == ((Sqrt[Pi] n!)/(2^n Gamma[1/2 + n])) LegendreP[n, z]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["z", " ", RowBox[List["p", "[", RowBox[List["n", ",", "z"]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List["p", "[", RowBox[List[RowBox[List["n", "+", "1"]], ",", "z"]], "]"]], "+", RowBox[List[FractionBox[SuperscriptBox["n", "2"], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["4", SuperscriptBox["n", "2"]]], "-", "1"]], ")"]], " "]]], RowBox[List["p", "[", RowBox[List[RowBox[List["n", "-", "1"]], ",", "z"]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List["p", "[", RowBox[List["n", ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["-", "n"]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["n", "!"]]]], RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "n"]], "]"]]], RowBox[List["LegendreP", "[", RowBox[List["n", ",", "z"]], "]"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mi> p </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mfrac> <msup> <mi> n </mi> <mn> 2 </mn> </msup> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> n </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mi> p </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> p </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> p </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mo> - </mo> <mi> n </mi> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox["P", LegendreP] </annotation> </semantics> <mi> n </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <times /> <ci> z </ci> <apply> <ci> p </ci> <ci> n </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> p </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <ci> p </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> p </ci> <ci> n </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <factorial /> <ci> n </ci> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> n </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> LegendreP </ci> <ci> n </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["z_", " ", RowBox[List["p", "[", RowBox[List["n_", ",", "z_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["p", "[", RowBox[List[RowBox[List["n", "+", "1"]], ",", "z"]], "]"]], "+", FractionBox[RowBox[List[SuperscriptBox["n", "2"], " ", RowBox[List["p", "[", RowBox[List[RowBox[List["n", "-", "1"]], ",", "z"]], "]"]]]], RowBox[List[RowBox[List["4", " ", SuperscriptBox["n", "2"]]], "-", "1"]]]]], "/;", RowBox[List[RowBox[List["p", "[", RowBox[List["n", ",", "z"]], "]"]], "\[Equal]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List["-", "n"]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["n", "!"]]]], ")"]], " ", RowBox[List["LegendreP", "[", RowBox[List["n", ",", "z"]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "n"]], "]"]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LegendreP[nu,z] | LegendreP[nu,mu,z] | LegendreP[n,mu,2,z] | LegendreP[nu,mu,2,z] | LegendreP[nu,mu,3,z] | |
|
|
|