| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/05.03.21.0006.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Integrate[LegendreP[m, t] LegendreP[n, t], {t, -1, 1}] == 
 (2/(2 n + 1)) KroneckerDelta[n, m] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["-", "1"]], "1"], RowBox[List[RowBox[List["LegendreP", "[", RowBox[List["m", ",", "t"]], "]"]], RowBox[List["LegendreP", "[", RowBox[List["n", ",", "t"]], "]"]], RowBox[List["\[DifferentialD]", "t"]]]]]], "\[Equal]", RowBox[List[FractionBox["2", RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]]], RowBox[List["KroneckerDelta", "[", RowBox[List["n", ",", "m"]], "]"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <msubsup>  <mo> ∫ </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 1 </mn>  </msubsup>  <mrow>  <mrow>  <mrow>  <msub>  <semantics>  <mi> P </mi>  <annotation encoding='Mathematica'> TagBox["P", LegendreP] </annotation>  </semantics>  <mi> m </mi>  </msub>  <mo> ( </mo>  <mi> t </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msub>  <semantics>  <mi> P </mi>  <annotation encoding='Mathematica'> TagBox["P", LegendreP] </annotation>  </semantics>  <mi> n </mi>  </msub>  <mo> ( </mo>  <mi> t </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> t </mi>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msub>  <semantics>  <mi> δ </mi>  <annotation-xml encoding='MathML-Content'>  <ci> KroneckerDelta </ci>  </annotation-xml>  </semantics>  <mrow>  <mi> n </mi>  <mo> , </mo>  <mi> m </mi>  </mrow>  </msub>  </mrow>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mfrac>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <int />  <bvar>  <ci> t </ci>  </bvar>  <lowlimit>  <cn type='integer'> -1 </cn>  </lowlimit>  <uplimit>  <cn type='integer'> 1 </cn>  </uplimit>  <apply>  <times />  <apply>  <ci> LegendreP </ci>  <ci> m </ci>  <ci> t </ci>  </apply>  <apply>  <ci> LegendreP </ci>  <ci> n </ci>  <ci> t </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <ci> KroneckerDelta </ci>  <ci> n </ci>  <ci> m </ci>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> n </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["-", "1"]], "1"], RowBox[List[RowBox[List[RowBox[List["LegendreP", "[", RowBox[List["m_", ",", "t_"]], "]"]], " ", RowBox[List["LegendreP", "[", RowBox[List["n_", ",", "t_"]], "]"]]]], RowBox[List["\[DifferentialD]", "t_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["2", " ", RowBox[List["KroneckerDelta", "[", RowBox[List["n", ",", "m"]], "]"]]]], RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 | | LegendreP[nu,z] |  | LegendreP[nu,mu,z] |  | LegendreP[n,mu,2,z] |  | LegendreP[nu,mu,2,z] |  | LegendreP[nu,mu,3,z] |  |  | 
 | 
 
 | 
 |