| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/05.03.26.0023.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | UnitStep[-1 + Abs[z]] LegendreP[n, 1/z] == MeijerG[{{1/2, 1}, {}}, 
  {{}, {-(n/2), (1 + n)/2}}, z, 1/2] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[" ", RowBox[List[RowBox[List[RowBox[List["UnitStep", "[", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Abs", "[", "z", "]"]]]], "]"]], RowBox[List["LegendreP", "[", RowBox[List["n", ",", FractionBox["1", "z"]]], "]"]]]], "\[Equal]", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", "1"]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["n", "2"]]], ",", FractionBox[RowBox[List["1", "+", "n"]], "2"]]], "}"]]]], "}"]], ",", "z", ",", FractionBox["1", "2"]]], "]"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <semantics>  <mi> θ </mi>  <annotation-xml encoding='MathML-Content'>  <ci> UnitStep </ci>  </annotation-xml>  </semantics>  <mo> ( </mo>  <mrow>  <mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation>  </semantics>  <mi> z </mi>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation>  </semantics>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msub>  <semantics>  <mi> P </mi>  <annotation encoding='Mathematica'> TagBox["P", LegendreP] </annotation>  </semantics>  <mi> n </mi>  </msub>  <mo> ( </mo>  <mfrac>  <mn> 1 </mn>  <mi> z </mi>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ⩵ </mo>  <semantics>  <mrow>  <msubsup>  <mi> G </mi>  <mrow>  <mn> 2 </mn>  <mo> , </mo>  <mn> 2 </mn>  </mrow>  <mrow>  <mn> 0 </mn>  <mo> , </mo>  <mn> 2 </mn>  </mrow>  </msubsup>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> z </mi>  <mo> , </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ❘ </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mi> n </mi>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> , </mo>  <mfrac>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </mfrac>  </mrow>  </mtd>  </mtr>  </mtable>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["2", ",", "2"]], RowBox[List["0", ",", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[RowBox[List[TagBox["z", MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox["1", "2"], MeijerG, Rule[Editable, True]]]], MeijerG], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[FractionBox["1", "2"], MeijerG, Rule[Editable, True]], ",", TagBox["1", MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[RowBox[List["-", FractionBox["n", "2"]]], MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List["n", "+", "1"]], "2"], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation>  </semantics>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <times />  <apply>  <ci> UnitStep </ci>  <apply>  <plus />  <apply>  <abs />  <ci> z </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> LegendreP </ci>  <ci> n </ci>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <ci> MeijerG </ci>  <list>  <list>  <cn type='rational'> 1 <sep /> 2 </cn>  <cn type='integer'> 1 </cn>  </list>  <list />  </list>  <list>  <list />  <list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> n </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </list>  </list>  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["UnitStep", "[", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Abs", "[", "z_", "]"]]]], "]"]], " ", RowBox[List["LegendreP", "[", RowBox[List["n_", ",", FractionBox["1", "z_"]]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", "1"]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["n", "2"]]], ",", FractionBox[RowBox[List["1", "+", "n"]], "2"]]], "}"]]]], "}"]], ",", "z", ",", FractionBox["1", "2"]]], "]"]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 | | LegendreP[nu,z] |  | LegendreP[nu,mu,z] |  | LegendreP[n,mu,2,z] |  | LegendreP[nu,mu,2,z] |  | LegendreP[nu,mu,3,z] |  |  | 
 | 
 
 | 
 |