|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/05.07.17.0007.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LegendreP[n, \[Mu] + 1, 2, z] - (\[Mu] (\[Mu] - 1) - n (1 + n))
LegendreP[n, \[Mu] - 1, 2, z] + ((2 \[Mu] z)/Sqrt[1 - z^2])
LegendreP[n, \[Mu], 2, z] == 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["LegendreP", "[", RowBox[List["n", ",", RowBox[List["\[Mu]", "+", "1"]], ",", "2", ",", "z"]], "]"]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[Mu]", RowBox[List["(", RowBox[List["\[Mu]", "-", "1"]], ")"]]]], "-", RowBox[List["n", " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]]], ")"]], " ", RowBox[List["LegendreP", "[", RowBox[List["n", ",", RowBox[List["\[Mu]", "-", "1"]], ",", "2", ",", "z"]], "]"]]]], "+", " ", RowBox[List[FractionBox[RowBox[List["2", " ", "\[Mu]", " ", "z"]], SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]], RowBox[List["LegendreP", "[", RowBox[List["n", ",", "\[Mu]", ",", "2", ",", "z"]], "]"]]]]]], "\[Equal]", "0"]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox["P", LegendreP] </annotation> </semantics> <mi> n </mi> <mrow> <mi> μ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox["z", HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> μ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> μ </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> n </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox["P", LegendreP] </annotation> </semantics> <mi> n </mi> <mrow> <mi> μ </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox["z", HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> μ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mfrac> <mo> ⁢ </mo> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox["P", LegendreP] </annotation> </semantics> <mi> n </mi> <mi> μ </mi> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox["z", HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mn> 0 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <plus /> <apply> <ci> LegendreP </ci> <ci> n </ci> <apply> <plus /> <ci> μ </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> μ </ci> <apply> <plus /> <ci> μ </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> n </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> LegendreP </ci> <ci> n </ci> <apply> <plus /> <ci> μ </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> μ </ci> <ci> z </ci> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> LegendreP </ci> <ci> n </ci> <ci> μ </ci> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["LegendreP", "[", RowBox[List["n_", ",", RowBox[List["\[Mu]_", "+", "1"]], ",", "2", ",", "z_"]], "]"]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[Mu]_", " ", RowBox[List["(", RowBox[List["\[Mu]_", "-", "1"]], ")"]]]], "-", RowBox[List["n_", " ", RowBox[List["(", RowBox[List["1", "+", "n_"]], ")"]]]]]], ")"]], " ", RowBox[List["LegendreP", "[", RowBox[List["n_", ",", RowBox[List["\[Mu]_", "-", "1"]], ",", "2", ",", "z_"]], "]"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", "\[Mu]_", " ", "z_"]], ")"]], " ", RowBox[List["LegendreP", "[", RowBox[List["n_", ",", "\[Mu]_", ",", "2", ",", "z_"]], "]"]]]], SqrtBox[RowBox[List["1", "-", SuperscriptBox["z_", "2"]]]]]]], "]"]], "\[RuleDelayed]", "0"]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LegendreP[n,z] | LegendreP[nu,z] | LegendreP[nu,mu,z] | LegendreP[nu,mu,2,z] | LegendreP[nu,mu,3,z] | |
|
|
|