Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
LegendreP






Mathematica Notation

Traditional Notation









Polynomials > LegendreP[n,mu,2,z] > Summation > Finite summation





http://functions.wolfram.com/05.07.23.0002.01









  


  










Input Form





Sum[((n - m)!/(n + m)!) LegendreP[n, m, 2, Cos[\[Theta]]] LegendreP[n, m, 2, Cos[Subscript[\[Theta], 1]]] Cos[m (\[Phi] - Subscript[\[Phi], 1])], {m, -n, n}] == LegendreP[n, Cos[\[Theta]] Cos[Subscript[\[Theta], 1]] + Sin[\[Theta]] Sin[Subscript[\[Theta], 1]] Cos[\[Phi] - Subscript[\[Phi], 1]]] /; 0 < \[Theta] < Pi/2 && 0 < Subscript[\[Theta], 1] < Pi/2 && 0 < \[Phi] < Pi/2 && 0 < Subscript[\[Phi], 1] < Pi/2










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", RowBox[List["-", "n"]]]], "n"], RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["n", "-", "m"]], ")"]], "!"]], " "]], RowBox[List[RowBox[List["(", RowBox[List["n", "+", "m"]], ")"]], "!"]]], RowBox[List["LegendreP", "[", RowBox[List["n", ",", "m", ",", "2", ",", RowBox[List["Cos", "[", "\[Theta]", "]"]]]], "]"]], " ", RowBox[List["LegendreP", "[", RowBox[List["n", ",", "m", ",", "2", ",", RowBox[List["Cos", "[", SubscriptBox["\[Theta]", "1"], "]"]]]], "]"]], RowBox[List["Cos", "[", RowBox[List["m", " ", RowBox[List["(", RowBox[List["\[Phi]", "-", SubscriptBox["\[Phi]", "1"]]], ")"]]]], "]"]]]]]], "\[Equal]", RowBox[List["LegendreP", "[", RowBox[List["n", ",", RowBox[List[RowBox[List[RowBox[List["Cos", "[", "\[Theta]", "]"]], " ", RowBox[List["Cos", "[", SubscriptBox["\[Theta]", "1"], "]"]]]], "+", RowBox[List[RowBox[List["Sin", "[", "\[Theta]", "]"]], " ", RowBox[List["Sin", "[", SubscriptBox["\[Theta]", "1"], "]"]], " ", RowBox[List["Cos", "[", RowBox[List["\[Phi]", "-", SubscriptBox["\[Phi]", "1"]]], "]"]]]]]]]], "]"]]]], "/;", RowBox[List[RowBox[List["0", "<", "\[Theta]", "<", RowBox[List["\[Pi]", "/", "2"]]]], "\[And]", RowBox[List["0", "<", SubscriptBox["\[Theta]", "1"], "<", RowBox[List["\[Pi]", "/", "2"]]]], "\[And]", RowBox[List["0", "<", "\[Phi]", "<", RowBox[List["\[Pi]", "/", "2"]]]], "\[And]", RowBox[List["0", "<", SubscriptBox["\[Phi]", "1"], "<", RowBox[List["\[Pi]", "/", "2"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> m </mi> <mo> = </mo> <mrow> <mo> - </mo> <mi> n </mi> </mrow> </mrow> <mi> n </mi> </munderover> <mrow> <mfrac> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#981; </mi> <mo> - </mo> <msub> <mi> &#981; </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox[&quot;P&quot;, LegendreP] </annotation> </semantics> <mi> n </mi> <mi> m </mi> </msubsup> <mo> ( </mo> <semantics> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#952; </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;cos&quot;, &quot;(&quot;, &quot;\[Theta]&quot;, &quot;)&quot;]], HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox[&quot;P&quot;, LegendreP] </annotation> </semantics> <mi> n </mi> <mi> m </mi> </msubsup> <mo> ( </mo> <semantics> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> &#952; </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;cos&quot;, &quot;(&quot;, SubscriptBox[&quot;\[Theta]&quot;, &quot;1&quot;], &quot;)&quot;]], HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> </mrow> <mtext> </mtext> <mo> &#10869; </mo> <mrow> <msub> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox[&quot;P&quot;, LegendreP] </annotation> </semantics> <mi> n </mi> </msub> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#952; </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> &#952; </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#981; </mi> <mo> - </mo> <msub> <mi> &#981; </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#952; </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> &#952; </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mn> 0 </mn> <mo> &lt; </mo> <mi> &#952; </mi> <mo> &lt; </mo> <mfrac> <mi> &#960; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8743; </mo> <mrow> <mn> 0 </mn> <mo> &lt; </mo> <msub> <mi> &#952; </mi> <mn> 1 </mn> </msub> <mo> &lt; </mo> <mfrac> <mi> &#960; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8743; </mo> <mrow> <mn> 0 </mn> <mo> &lt; </mo> <mi> &#981; </mi> <mo> &lt; </mo> <mfrac> <mi> &#960; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8743; </mo> <mrow> <mn> 0 </mn> <mo> &lt; </mo> <msub> <mi> &#981; </mi> <mn> 1 </mn> </msub> <mo> &lt; </mo> <mfrac> <mi> &#960; </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <sum /> <bvar> <ci> m </ci> </bvar> <lowlimit> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <apply> <cos /> <apply> <times /> <ci> m </ci> <apply> <plus /> <ci> &#981; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> &#981; </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> m </ci> <ci> n </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> LegendreP </ci> <ci> n </ci> <ci> m </ci> <cn type='integer'> 2 </cn> <apply> <cos /> <ci> &#952; </ci> </apply> </apply> <apply> <ci> LegendreP </ci> <ci> n </ci> <ci> m </ci> <cn type='integer'> 2 </cn> <apply> <cos /> <apply> <ci> Subscript </ci> <ci> &#952; </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> LegendreP </ci> <ci> n </ci> <apply> <plus /> <apply> <times /> <apply> <cos /> <ci> &#952; </ci> </apply> <apply> <cos /> <apply> <ci> Subscript </ci> <ci> &#952; </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <cos /> <apply> <plus /> <ci> &#981; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> &#981; </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <sin /> <ci> &#952; </ci> </apply> <apply> <sin /> <apply> <ci> Subscript </ci> <ci> &#952; </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <lt /> <cn type='integer'> 0 </cn> <ci> &#952; </ci> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <lt /> <cn type='integer'> 0 </cn> <apply> <ci> Subscript </ci> <ci> &#952; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <lt /> <cn type='integer'> 0 </cn> <ci> &#981; </ci> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <lt /> <cn type='integer'> 0 </cn> <apply> <ci> Subscript </ci> <ci> &#981; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m_", "=", RowBox[List["-", "n_"]]]], "n_"], FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["n_", "-", "m_"]], ")"]], "!"]], " ", RowBox[List["LegendreP", "[", RowBox[List["n_", ",", "m_", ",", "2", ",", RowBox[List["Cos", "[", "\[Theta]_", "]"]]]], "]"]], " ", RowBox[List["LegendreP", "[", RowBox[List["n_", ",", "m_", ",", "2", ",", RowBox[List["Cos", "[", SubscriptBox["\[Theta]_", "1"], "]"]]]], "]"]], " ", RowBox[List["Cos", "[", RowBox[List["m_", " ", RowBox[List["(", RowBox[List["\[Phi]_", "-", SubscriptBox["\[Phi]_", "1"]]], ")"]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["n_", "+", "m_"]], ")"]], "!"]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["LegendreP", "[", RowBox[List["n", ",", RowBox[List[RowBox[List[RowBox[List["Cos", "[", "\[Theta]", "]"]], " ", RowBox[List["Cos", "[", SubscriptBox["\[Theta]\[Theta]", "1"], "]"]]]], "+", RowBox[List[RowBox[List["Sin", "[", "\[Theta]", "]"]], " ", RowBox[List["Sin", "[", SubscriptBox["\[Theta]\[Theta]", "1"], "]"]], " ", RowBox[List["Cos", "[", RowBox[List["\[Phi]", "-", SubscriptBox["\[Phi]\[Phi]", "1"]]], "]"]]]]]]]], "]"]], "/;", RowBox[List[RowBox[List["0", "<", "\[Theta]", "<", FractionBox["\[Pi]", "2"]]], "&&", RowBox[List["0", "<", SubscriptBox["\[Theta]\[Theta]", "1"], "<", FractionBox["\[Pi]", "2"]]], "&&", RowBox[List["0", "<", "\[Phi]", "<", FractionBox["\[Pi]", "2"]]], "&&", RowBox[List["0", "<", SubscriptBox["\[Phi]\[Phi]", "1"], "<", FractionBox["\[Pi]", "2"]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29