|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/05.07.26.0013.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(UnitStep[-1 + Abs[z]] LegendreP[n, \[Mu], 2, -1 + 2/z])/
(-1 + z)^(\[Mu]/2) == MeijerG[{{1, 1 - \[Mu]}, {}}, {{}, {-n, 1 + n}},
z] /; !IntervalMemberQ[Interval[{-Infinity, -1}], z]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List["UnitStep", "[", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Abs", "[", "z", "]"]]]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], RowBox[List[RowBox[List["-", "\[Mu]"]], "/", "2"]]], " ", RowBox[List["LegendreP", "[", RowBox[List["n", ",", "\[Mu]", ",", "2", ",", RowBox[List[RowBox[List["-", "1"]], "+", FractionBox["2", "z"]]]]], "]"]]]], " ", "\[Equal]", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["1", ",", RowBox[List["1", "-", "\[Mu]"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", "n"]], ",", RowBox[List["1", "+", "n"]]]], "}"]]]], "}"]], ",", "z"]], "]"]]]], "/;", RowBox[List["Not", "[", RowBox[List["IntervalMemberQ", "[", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List["-", "\[Infinity]"]], ",", RowBox[List["-", "1"]]]], "}"]], "]"]], ",", "z"]], "]"]], "]"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mtext> </mtext> <mrow> <mrow> <mrow> <mrow> <semantics> <mi> θ </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> z </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mfrac> <mi> μ </mi> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox["P", LegendreP] </annotation> </semantics> <mi> n </mi> <mi> μ </mi> </msubsup> <mo> ( </mo> <semantics> <mrow> <mfrac> <mn> 2 </mn> <mi> z </mi> </mfrac> <mo> - </mo> <mn> 1 </mn> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[FractionBox["2", "z"], "-", "1"]], HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> <mo> ⩵ </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mn> 1 </mn> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> μ </mi> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> , </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["2", ",", "2"]], RowBox[List["0", ",", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox["z", MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox["1", MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "\[Mu]"]], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[RowBox[List["-", "n"]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["n", "+", "1"]], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> </mrow> <mo> /; </mo> <mrow> <mi> z </mi> <mo> ∉ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> ∞ </mi> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mtext> </mtext> <mrow> <mrow> <mrow> <mrow> <semantics> <mi> θ </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> z </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mfrac> <mi> μ </mi> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox["P", LegendreP] </annotation> </semantics> <mi> n </mi> <mi> μ </mi> </msubsup> <mo> ( </mo> <semantics> <mrow> <mfrac> <mn> 2 </mn> <mi> z </mi> </mfrac> <mo> - </mo> <mn> 1 </mn> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[FractionBox["2", "z"], "-", "1"]], HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> <mo> ⩵ </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mn> 1 </mn> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> μ </mi> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> , </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["2", ",", "2"]], RowBox[List["0", ",", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox["z", MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox["1", MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "\[Mu]"]], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[RowBox[List["-", "n"]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["n", "+", "1"]], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> </mrow> <mo> /; </mo> <mrow> <mi> z </mi> <mo> ∉ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> ∞ </mi> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["UnitStep", "[", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Abs", "[", "z_", "]"]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z_"]], ")"]], RowBox[List["-", FractionBox["\[Mu]_", "2"]]]], " ", RowBox[List["LegendreP", "[", RowBox[List["n_", ",", "\[Mu]_", ",", "2", ",", RowBox[List[RowBox[List["-", "1"]], "+", FractionBox["2", "z_"]]]]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["1", ",", RowBox[List["1", "-", "\[Mu]"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", "n"]], ",", RowBox[List["1", "+", "n"]]]], "}"]]]], "}"]], ",", "z"]], "]"]], "/;", RowBox[List["!", RowBox[List["IntervalMemberQ", "[", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List["-", "\[Infinity]"]], ",", RowBox[List["-", "1"]]]], "}"]], "]"]], ",", "z"]], "]"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LegendreP[n,z] | LegendreP[nu,z] | LegendreP[nu,mu,z] | LegendreP[nu,mu,2,z] | LegendreP[nu,mu,3,z] | |
|
|
|