|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/05.07.27.0001.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LegendreP[n, \[Mu], 2, z] ==
(((Gamma[1/2 - \[Mu]] Gamma[1 + \[Mu] + n])/
(2^\[Mu] (Sqrt[Pi] Gamma[1 - \[Mu] + n]))) GegenbauerC[\[Mu] + n,
1/2 - \[Mu], z])/(1 - z^2)^(\[Mu]/2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["LegendreP", "[", RowBox[List["n", ",", "\[Mu]", ",", "2", ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["-", "\[Mu]"]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "-", "\[Mu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Mu]", "+", "n"]], "]"]]]], RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "n"]], "]"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["z", "2"]]], ")"]], RowBox[List[RowBox[List["-", "\[Mu]"]], "/", "2"]]], " ", RowBox[List["GegenbauerC", "[", RowBox[List[RowBox[List["\[Mu]", "+", "n"]], ",", RowBox[List[FractionBox["1", "2"], "-", "\[Mu]"]], ",", "z"]], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox["P", LegendreP] </annotation> </semantics> <mi> n </mi> <mi> μ </mi> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox["z", HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mo> - </mo> <mi> μ </mi> </mrow> </msup> <mo> ⁢ </mo> <mtext> </mtext> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> μ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> μ </mi> <mo> + </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> μ </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> μ </mi> </mrow> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msubsup> <mi> C </mi> <mrow> <mi> μ </mi> <mo> + </mo> <mi> n </mi> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> μ </mi> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> LegendreP </ci> <ci> n </ci> <ci> μ </ci> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> μ </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> <ci> n </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> C </ci> <apply> <plus /> <ci> μ </ci> <ci> n </ci> </apply> </apply> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LegendreP", "[", RowBox[List["n_", ",", "\[Mu]_", ",", "2", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List["-", "\[Mu]"]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "-", "\[Mu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Mu]", "+", "n"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["z", "2"]]], ")"]], RowBox[List["-", FractionBox["\[Mu]", "2"]]]], " ", RowBox[List["GegenbauerC", "[", RowBox[List[RowBox[List["\[Mu]", "+", "n"]], ",", RowBox[List[FractionBox["1", "2"], "-", "\[Mu]"]], ",", "z"]], "]"]]]], RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "n"]], "]"]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LegendreP[n,z] | LegendreP[nu,z] | LegendreP[nu,mu,z] | LegendreP[nu,mu,2,z] | LegendreP[nu,mu,3,z] | |
|
|
|