Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
SphericalHarmonicY






Mathematica Notation

Traditional Notation









Polynomials > SphericalHarmonicY[n,m,theta,phi] > Specific values > Specialized values > For fixed m, theta, phi





http://functions.wolfram.com/05.10.03.0024.01









  


  










Input Form





SphericalHarmonicY[9, m, \[CurlyTheta], \[CurlyPhi]] == (Sqrt[19] E^(I m \[CurlyPhi]) ((-m) (147456 - 52480 m^2 + 4368 m^4 - 120 m^6 + m^8) + 45 (19845 - 20217 m^2 + 2674 m^4 - 98 m^6 + m^8) Cos[\[CurlyTheta]] - 495 m (-11601 + 2933 m^2 - 154 m^4 + 2 m^6) Cos[\[CurlyTheta]]^2 + 6930 (-1890 + 1373 m^2 - 115 m^4 + 2 m^6) Cos[\[CurlyTheta]]^3 - 135135 m (249 - 40 m^2 + m^4) Cos[\[CurlyTheta]]^4 + 945945 (54 - 25 m^2 + m^4) Cos[\[CurlyTheta]]^5 - 4729725 m (-13 + m^2) Cos[\[CurlyTheta]]^6 + 8108100 (-9 + 2 m^2) Cos[\[CurlyTheta]]^7 - 34459425 m Cos[\[CurlyTheta]]^8 + 34459425 Cos[\[CurlyTheta]]^9) (Cos[\[CurlyTheta]/2]^2)^(m/2))/(Sin[\[CurlyTheta]/2]^2)^(m/2)/ (2 Sqrt[Pi] Sqrt[Gamma[10 - m]] Sqrt[Gamma[10 + m]])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["SphericalHarmonicY", "[", RowBox[List["9", ",", "m", ",", "\[CurlyTheta]", ",", "\[CurlyPhi]"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[SqrtBox["19"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[CurlyPhi]"]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "m"]], " ", RowBox[List["(", RowBox[List["147456", "-", RowBox[List["52480", " ", SuperscriptBox["m", "2"]]], "+", RowBox[List["4368", " ", SuperscriptBox["m", "4"]]], "-", RowBox[List["120", " ", SuperscriptBox["m", "6"]]], "+", SuperscriptBox["m", "8"]]], ")"]]]], "+", RowBox[List["45", " ", RowBox[List["(", RowBox[List["19845", "-", RowBox[List["20217", " ", SuperscriptBox["m", "2"]]], "+", RowBox[List["2674", " ", SuperscriptBox["m", "4"]]], "-", RowBox[List["98", " ", SuperscriptBox["m", "6"]]], "+", SuperscriptBox["m", "8"]]], ")"]], " ", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]], "-", RowBox[List["495", " ", "m", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "11601"]], "+", RowBox[List["2933", " ", SuperscriptBox["m", "2"]]], "-", RowBox[List["154", " ", SuperscriptBox["m", "4"]]], "+", RowBox[List["2", " ", SuperscriptBox["m", "6"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]], "2"]]], "+", RowBox[List["6930", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1890"]], "+", RowBox[List["1373", " ", SuperscriptBox["m", "2"]]], "-", RowBox[List["115", " ", SuperscriptBox["m", "4"]]], "+", RowBox[List["2", " ", SuperscriptBox["m", "6"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]], "3"]]], "-", RowBox[List["135135", " ", "m", " ", RowBox[List["(", RowBox[List["249", "-", RowBox[List["40", " ", SuperscriptBox["m", "2"]]], "+", SuperscriptBox["m", "4"]]], ")"]], " ", SuperscriptBox[RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]], "4"]]], "+", RowBox[List["945945", " ", RowBox[List["(", RowBox[List["54", "-", RowBox[List["25", " ", SuperscriptBox["m", "2"]]], "+", SuperscriptBox["m", "4"]]], ")"]], " ", SuperscriptBox[RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]], "5"]]], "-", RowBox[List["4729725", " ", "m", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "13"]], "+", SuperscriptBox["m", "2"]]], ")"]], " ", SuperscriptBox[RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]], "6"]]], "+", RowBox[List["8108100", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "9"]], "+", RowBox[List["2", " ", SuperscriptBox["m", "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]], "7"]]], "-", RowBox[List["34459425", " ", "m", " ", SuperscriptBox[RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]], "8"]]], "+", RowBox[List["34459425", " ", SuperscriptBox[RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]], "9"]]]]], ")"]], SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["Cos", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "2"], ")"]], RowBox[List["m", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["Sin", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "2"], ")"]], RowBox[List[RowBox[List["-", "m"]], "/", "2"]]]]], ")"]], "/", RowBox[List["(", RowBox[List["2", SqrtBox["\[Pi]"], SqrtBox[RowBox[List["Gamma", "[", RowBox[List["10", "-", "m"]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["10", "+", "m"]], "]"]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msubsup> <mi> Y </mi> <mn> 9 </mn> <mi> m </mi> </msubsup> <mo> ( </mo> <mrow> <mi> &#977; </mi> <mo> , </mo> <mi> &#966; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msqrt> <mn> 19 </mn> </msqrt> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> m </mi> <mo> &#8290; </mo> <mi> &#966; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 34459425 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> cos </mi> <mn> 9 </mn> </msup> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 34459425 </mn> <mo> &#8290; </mo> <mi> m </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> cos </mi> <mn> 8 </mn> </msup> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 8108100 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mn> 9 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> cos </mi> <mn> 7 </mn> </msup> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 4729725 </mn> <mo> &#8290; </mo> <mi> m </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> m </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 13 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> cos </mi> <mn> 6 </mn> </msup> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 945945 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> m </mi> <mn> 4 </mn> </msup> <mo> - </mo> <mrow> <mn> 25 </mn> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 54 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> cos </mi> <mn> 5 </mn> </msup> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 135135 </mn> <mo> &#8290; </mo> <mi> m </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> m </mi> <mn> 4 </mn> </msup> <mo> - </mo> <mrow> <mn> 40 </mn> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 249 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> cos </mi> <mn> 4 </mn> </msup> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 6930 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 115 </mn> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1373 </mn> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mn> 1890 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> cos </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 495 </mn> <mo> &#8290; </mo> <mi> m </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 154 </mn> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2933 </mn> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mn> 11601 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> cos </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 45 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> m </mi> <mn> 8 </mn> </msup> <mo> - </mo> <mrow> <mn> 98 </mn> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2674 </mn> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 20217 </mn> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 19845 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> m </mi> <mn> 8 </mn> </msup> <mo> - </mo> <mrow> <mn> 120 </mn> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4368 </mn> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 52480 </mn> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 147456 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <msup> <mi> cos </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mi> &#977; </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mi> m </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mi> &#977; </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 10 </mn> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> m </mi> <mo> + </mo> <mn> 10 </mn> </mrow> <mo> ) </mo> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> SphericalHarmonicY </ci> <cn type='integer'> 9 </cn> <ci> m </ci> <ci> &#977; </ci> <ci> &#966; </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 19 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> m </ci> <ci> &#966; </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 34459425 </cn> <apply> <power /> <apply> <cos /> <ci> &#977; </ci> </apply> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 34459425 </cn> <ci> m </ci> <apply> <power /> <apply> <cos /> <ci> &#977; </ci> </apply> <cn type='integer'> 8 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 8108100 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -9 </cn> </apply> <apply> <power /> <apply> <cos /> <ci> &#977; </ci> </apply> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4729725 </cn> <ci> m </ci> <apply> <plus /> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -13 </cn> </apply> <apply> <power /> <apply> <cos /> <ci> &#977; </ci> </apply> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 945945 </cn> <apply> <plus /> <apply> <power /> <ci> m </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 25 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 54 </cn> </apply> <apply> <power /> <apply> <cos /> <ci> &#977; </ci> </apply> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 135135 </cn> <ci> m </ci> <apply> <plus /> <apply> <power /> <ci> m </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 40 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 249 </cn> </apply> <apply> <power /> <apply> <cos /> <ci> &#977; </ci> </apply> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 6930 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 115 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1373 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1890 </cn> </apply> <apply> <power /> <apply> <cos /> <ci> &#977; </ci> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 495 </cn> <ci> m </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 154 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2933 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -11601 </cn> </apply> <apply> <power /> <apply> <cos /> <ci> &#977; </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 45 </cn> <apply> <plus /> <apply> <power /> <ci> m </ci> <cn type='integer'> 8 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 98 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2674 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 20217 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 19845 </cn> </apply> <apply> <cos /> <ci> &#977; </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <apply> <plus /> <apply> <power /> <ci> m </ci> <cn type='integer'> 8 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 120 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4368 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 52480 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 147456 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <cos /> <apply> <times /> <ci> &#977; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <sin /> <apply> <times /> <ci> &#977; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 10 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> m </ci> <cn type='integer'> 10 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["SphericalHarmonicY", "[", RowBox[List["9", ",", "m_", ",", "\[CurlyTheta]_", ",", "\[CurlyPhi]_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SqrtBox["19"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[CurlyPhi]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "m"]], " ", RowBox[List["(", RowBox[List["147456", "-", RowBox[List["52480", " ", SuperscriptBox["m", "2"]]], "+", RowBox[List["4368", " ", SuperscriptBox["m", "4"]]], "-", RowBox[List["120", " ", SuperscriptBox["m", "6"]]], "+", SuperscriptBox["m", "8"]]], ")"]]]], "+", RowBox[List["45", " ", RowBox[List["(", RowBox[List["19845", "-", RowBox[List["20217", " ", SuperscriptBox["m", "2"]]], "+", RowBox[List["2674", " ", SuperscriptBox["m", "4"]]], "-", RowBox[List["98", " ", SuperscriptBox["m", "6"]]], "+", SuperscriptBox["m", "8"]]], ")"]], " ", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]], "-", RowBox[List["495", " ", "m", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "11601"]], "+", RowBox[List["2933", " ", SuperscriptBox["m", "2"]]], "-", RowBox[List["154", " ", SuperscriptBox["m", "4"]]], "+", RowBox[List["2", " ", SuperscriptBox["m", "6"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]], "2"]]], "+", RowBox[List["6930", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1890"]], "+", RowBox[List["1373", " ", SuperscriptBox["m", "2"]]], "-", RowBox[List["115", " ", SuperscriptBox["m", "4"]]], "+", RowBox[List["2", " ", SuperscriptBox["m", "6"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]], "3"]]], "-", RowBox[List["135135", " ", "m", " ", RowBox[List["(", RowBox[List["249", "-", RowBox[List["40", " ", SuperscriptBox["m", "2"]]], "+", SuperscriptBox["m", "4"]]], ")"]], " ", SuperscriptBox[RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]], "4"]]], "+", RowBox[List["945945", " ", RowBox[List["(", RowBox[List["54", "-", RowBox[List["25", " ", SuperscriptBox["m", "2"]]], "+", SuperscriptBox["m", "4"]]], ")"]], " ", SuperscriptBox[RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]], "5"]]], "-", RowBox[List["4729725", " ", "m", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "13"]], "+", SuperscriptBox["m", "2"]]], ")"]], " ", SuperscriptBox[RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]], "6"]]], "+", RowBox[List["8108100", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "9"]], "+", RowBox[List["2", " ", SuperscriptBox["m", "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]], "7"]]], "-", RowBox[List["34459425", " ", "m", " ", SuperscriptBox[RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]], "8"]]], "+", RowBox[List["34459425", " ", SuperscriptBox[RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]], "9"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["Cos", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "2"], ")"]], RowBox[List["m", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["Sin", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "2"], ")"]], RowBox[List["-", FractionBox["m", "2"]]]]]], RowBox[List["2", " ", SqrtBox["\[Pi]"], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["10", "-", "m"]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["10", "+", "m"]], "]"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29