|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/05.10.03.0030.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SphericalHarmonicY[n, 0, k Pi, \[CurlyPhi]] == (-1)^(n (2 Floor[k/2] - k))
Sqrt[(2 n + 1)/(4 Pi)] /; Element[k, Integers]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["SphericalHarmonicY", "[", RowBox[List["n", ",", "0", ",", RowBox[List["k", " ", "\[Pi]"]], ",", "\[CurlyPhi]"]], "]"]], "\[Equal]", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", " ", RowBox[List["(", RowBox[List[RowBox[List["2", RowBox[List["Floor", "[", FractionBox["k", "2"], "]"]]]], "-", "k"]], ")"]]]]], SqrtBox[FractionBox[RowBox[List[RowBox[List["2", "n"]], "+", "1"]], RowBox[List["4", "\[Pi]"]]]]]]]], "/;", RowBox[List["k", "\[Element]", "Integers"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mi> Y </mi> <mi> n </mi> <mn> 0 </mn> </msubsup> <mo> ( </mo> <mrow> <mrow> <mi> k </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> , </mo> <mi> φ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ⌊ </mo> <mfrac> <mi> k </mi> <mn> 2 </mn> </mfrac> <mo> ⌋ </mo> </mrow> </mrow> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> </msqrt> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> k </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> SphericalHarmonicY </ci> <ci> n </ci> <cn type='integer'> 0 </cn> <apply> <times /> <ci> k </ci> <pi /> </apply> <ci> φ </ci> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> n </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <floor /> <apply> <times /> <ci> k </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <in /> <ci> k </ci> <integers /> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["SphericalHarmonicY", "[", RowBox[List["n_", ",", "0", ",", RowBox[List["k_", " ", "\[Pi]"]], ",", "\[CurlyPhi]_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["Floor", "[", FractionBox["k", "2"], "]"]]]], "-", "k"]], ")"]]]]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]], RowBox[List["4", " ", "\[Pi]"]]]]]], "/;", RowBox[List["k", "\[Element]", "Integers"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|