|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/05.10.03.0036.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SphericalHarmonicY[2, -1, \[CurlyTheta], \[CurlyPhi]] ==
((1/2) Sqrt[15/(2 Pi)] Cos[\[CurlyTheta]] Sqrt[Sin[\[CurlyTheta]]^2])/
E^(I \[CurlyPhi])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["SphericalHarmonicY", "[", RowBox[List["2", ",", RowBox[List["-", "1"]], ",", "\[CurlyTheta]", ",", "\[CurlyPhi]"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "\[CurlyPhi]"]]], " ", SqrtBox[FractionBox["15", RowBox[List["2", " ", "\[Pi]"]]]], " ", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]], " ", SqrtBox[SuperscriptBox[RowBox[List["Sin", "[", "\[CurlyTheta]", "]"]], "2"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msubsup> <mi> Y </mi> <mn> 2 </mn> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msubsup> <mo> ( </mo> <mrow> <mi> ϑ </mi> <mo> , </mo> <mi> φ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> φ </mi> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mfrac> <mn> 15 </mn> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> </msqrt> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> ϑ </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> ϑ </mi> <mo> ) </mo> </mrow> </msqrt> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> SphericalHarmonicY </ci> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> <ci> ϑ </ci> <ci> φ </ci> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> φ </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 15 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <cos /> <ci> ϑ </ci> </apply> <apply> <power /> <apply> <power /> <apply> <sin /> <ci> ϑ </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["SphericalHarmonicY", "[", RowBox[List["2", ",", RowBox[List["-", "1"]], ",", "\[CurlyTheta]_", ",", "\[CurlyPhi]_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "\[CurlyPhi]"]]], " ", SqrtBox[FractionBox["15", RowBox[List["2", " ", "\[Pi]"]]]], " ", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]], " ", SqrtBox[SuperscriptBox[RowBox[List["Sin", "[", "\[CurlyTheta]", "]"]], "2"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|