Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
SphericalHarmonicY






Mathematica Notation

Traditional Notation









Polynomials > SphericalHarmonicY[n,m,theta,phi] > Generating functions





http://functions.wolfram.com/05.10.11.0003.01









  


  










Input Form





1/(((1 + Sqrt[1 - 2 w Cos[\[CurlyTheta]] + w^2])^2 - w^2)^m Sqrt[1 - 2 w Cos[\[CurlyTheta]] + w^2]) == ((-1)^m/(2^m Sin[\[CurlyTheta]]^m)) Sum[w^(n - m) n! Sqrt[(4 Pi)/((2 n + 1) (n + m)! (n - m)!)] SphericalHarmonicY[n, m, \[CurlyTheta], 0], {n, m, Infinity}] /; m >= 0 && Element[\[CurlyTheta], Reals] && Abs[w] < 1










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", RowBox[List["2", "w", " ", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]], "+", SuperscriptBox["w", "2"]]]]]], ")"]], "2"], "-", SuperscriptBox["w", "2"]]], ")"]], RowBox[List["-", "m"]]], SqrtBox[RowBox[List["1", "-", RowBox[List["2", "w", " ", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]], "+", SuperscriptBox["w", "2"]]]]], "\[Equal]", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], RowBox[List[SuperscriptBox["2", "m"], " ", SuperscriptBox[RowBox[List["Sin", "[", "\[CurlyTheta]", "]"]], "m"]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", "m"]], "\[Infinity]"], RowBox[List[SuperscriptBox["w", RowBox[List["n", "-", "m"]]], " ", RowBox[List["n", "!"]], " ", SqrtBox[FractionBox[RowBox[List["4", "\[Pi]"]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "n"]], "+", "1"]], ")"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "+", "m"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "m"]], ")"]], "!"]]]]]], " ", RowBox[List["SphericalHarmonicY", "[", RowBox[List["n", ",", "m", ",", "\[CurlyTheta]", ",", "0"]], "]"]]]]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["\[CurlyTheta]", "\[Element]", "Reals"]], "\[And]", RowBox[List[RowBox[List["Abs", "[", "w", "]"]], "<", "1"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> w </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mi> w </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> w </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> </msup> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> w </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mi> w </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mfrac> <mo> &#10869; </mo> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> m </mi> </msup> <mrow> <msup> <mn> 2 </mn> <mi> m </mi> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mi> m </mi> </msup> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> n </mi> <mo> = </mo> <mi> m </mi> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <msup> <mi> w </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <mrow> <msubsup> <mi> Y </mi> <mi> n </mi> <mi> m </mi> </msubsup> <mo> ( </mo> <mrow> <mi> &#977; </mi> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> m </mi> <mo> &#8805; </mo> <mn> 0 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mi> &#977; </mi> <mo> &#8712; </mo> <semantics> <mi> &#8477; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalR]&quot;, Function[Reals]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> w </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &lt; </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> w </ci> <apply> <cos /> <ci> &#977; </ci> </apply> </apply> </apply> <apply> <power /> <ci> w </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> w </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> w </ci> <apply> <cos /> <ci> &#977; </ci> </apply> </apply> </apply> <apply> <power /> <ci> w </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <apply> <power /> <apply> <sin /> <ci> &#977; </ci> </apply> <ci> m </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> n </ci> </bvar> <lowlimit> <ci> m </ci> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <ci> w </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <apply> <factorial /> <ci> n </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <pi /> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <ci> m </ci> </apply> </apply> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> SphericalHarmonicY </ci> <ci> n </ci> <ci> m </ci> <ci> &#977; </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <geq /> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <apply> <in /> <ci> &#977; </ci> <reals /> </apply> <apply> <lt /> <apply> <abs /> <ci> w </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", RowBox[List["2", " ", "w_", " ", RowBox[List["Cos", "[", "\[CurlyTheta]_", "]"]]]], "+", SuperscriptBox["w_", "2"]]]]]], ")"]], "2"], "-", SuperscriptBox["w_", "2"]]], ")"]], RowBox[List["-", "m_"]]], SqrtBox[RowBox[List["1", "-", RowBox[List["2", " ", "w_", " ", RowBox[List["Cos", "[", "\[CurlyTheta]_", "]"]]]], "+", SuperscriptBox["w_", "2"]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", "m"]], "\[Infinity]"], RowBox[List[SuperscriptBox["w", RowBox[List["n", "-", "m"]]], " ", RowBox[List["n", "!"]], " ", SqrtBox[FractionBox[RowBox[List["4", " ", "\[Pi]"]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]], ")"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "+", "m"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "m"]], ")"]], "!"]]]]]], " ", RowBox[List["SphericalHarmonicY", "[", RowBox[List["n", ",", "m", ",", "\[CurlyTheta]", ",", "0"]], "]"]]]]]]]], RowBox[List[SuperscriptBox["2", "m"], " ", SuperscriptBox[RowBox[List["Sin", "[", "\[CurlyTheta]", "]"]], "m"]]]], "/;", RowBox[List[RowBox[List["m", "\[GreaterEqual]", "0"]], "&&", RowBox[List["\[CurlyTheta]", "\[Element]", "Reals"]], "&&", RowBox[List[RowBox[List["Abs", "[", "w", "]"]], "<", "1"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29