Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
SphericalHarmonicY






Mathematica Notation

Traditional Notation









Polynomials > SphericalHarmonicY[n,m,theta,phi] > Identities > Recurrence identities > Consecutive neighbors





http://functions.wolfram.com/05.10.17.0003.01









  


  










Input Form





SphericalHarmonicY[n, m, \[CurlyTheta], \[CurlyPhi]] == (((2 (m + 1) Sqrt[(n - m) (n + m + 1)])/(m (m + 1) - n (n + 1))) Cot[\[CurlyTheta]] SphericalHarmonicY[n, m + 1, \[CurlyTheta], \[CurlyPhi]])/E^(I \[CurlyPhi]) + ((Sqrt[(n - m) (n - m - 1) (n + m + 2) (n + m + 1)]/ (m (m + 1) - n (n + 1))) SphericalHarmonicY[n, m + 2, \[CurlyTheta], \[CurlyPhi]])/E^(2 I \[CurlyPhi])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["SphericalHarmonicY", "[", RowBox[List["n", ",", "m", ",", "\[CurlyTheta]", ",", "\[CurlyPhi]"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List["2", RowBox[List["(", RowBox[List["m", "+", "1"]], ")"]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["n", "-", "m"]], ")"]], RowBox[List["(", RowBox[List["n", "+", "m", "+", "1"]], ")"]]]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["m", RowBox[List["(", RowBox[List["m", "+", "1"]], ")"]]]], "-", RowBox[List["n", " ", RowBox[List["(", RowBox[List["n", "+", "1"]], ")"]]]]]], ")"]], " "]]], SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "\[CurlyPhi]"]]], " ", RowBox[List["Cot", "[", "\[CurlyTheta]", "]"]], " ", RowBox[List["SphericalHarmonicY", "[", RowBox[List["n", ",", RowBox[List["m", "+", "1"]], ",", "\[CurlyTheta]", ",", "\[CurlyPhi]"]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List[" ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["n", "-", "m"]], ")"]], RowBox[List["(", RowBox[List["n", "-", "m", "-", "1"]], ")"]], RowBox[List["(", RowBox[List["n", "+", "m", "+", "2"]], ")"]], RowBox[List["(", RowBox[List["n", "+", "m", "+", "1"]], ")"]]]]]]], RowBox[List["(", RowBox[List[RowBox[List["m", RowBox[List["(", RowBox[List["m", "+", "1"]], ")"]]]], "-", RowBox[List["n", " ", RowBox[List["(", RowBox[List["n", "+", "1"]], ")"]]]]]], ")"]]], SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], "\[ImaginaryI]", " ", "\[CurlyPhi]"]]], " ", RowBox[List["SphericalHarmonicY", "[", RowBox[List["n", ",", RowBox[List["m", "+", "2"]], ",", "\[CurlyTheta]", ",", "\[CurlyPhi]"]], "]"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msubsup> <mi> Y </mi> <mi> n </mi> <mi> m </mi> </msubsup> <mo> ( </mo> <mrow> <mi> &#977; </mi> <mo> , </mo> <mi> &#966; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> n </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> &#966; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> cot </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msubsup> <mi> Y </mi> <mi> n </mi> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msubsup> <mo> ( </mo> <mrow> <mi> &#977; </mi> <mo> , </mo> <mi> &#966; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mtext> </mtext> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mi> m </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> n </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#966; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <msubsup> <mi> Y </mi> <mi> n </mi> <mrow> <mi> m </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> ( </mo> <mrow> <mi> &#977; </mi> <mo> , </mo> <mi> &#966; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> SphericalHarmonicY </ci> <ci> n </ci> <ci> m </ci> <ci> &#977; </ci> <ci> &#966; </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <plus /> <ci> n </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> m </ci> <apply> <plus /> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> n </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> &#966; </ci> </apply> </apply> <apply> <cot /> <ci> &#977; </ci> </apply> <apply> <ci> SphericalHarmonicY </ci> <ci> n </ci> <apply> <plus /> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <ci> &#977; </ci> <ci> &#966; </ci> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> n </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <ci> n </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> m </ci> <apply> <plus /> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> n </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -2 </cn> <imaginaryi /> <ci> &#966; </ci> </apply> </apply> <apply> <ci> SphericalHarmonicY </ci> <ci> n </ci> <apply> <plus /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> <ci> &#977; </ci> <ci> &#966; </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["SphericalHarmonicY", "[", RowBox[List["n_", ",", "m_", ",", "\[CurlyTheta]_", ",", "\[CurlyPhi]_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", RowBox[List["(", RowBox[List["m", "+", "1"]], ")"]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["n", "-", "m"]], ")"]], " ", RowBox[List["(", RowBox[List["n", "+", "m", "+", "1"]], ")"]]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "\[CurlyPhi]"]]], " ", RowBox[List["Cot", "[", "\[CurlyTheta]", "]"]], " ", RowBox[List["SphericalHarmonicY", "[", RowBox[List["n", ",", RowBox[List["m", "+", "1"]], ",", "\[CurlyTheta]", ",", "\[CurlyPhi]"]], "]"]]]], RowBox[List[RowBox[List["m", " ", RowBox[List["(", RowBox[List["m", "+", "1"]], ")"]]]], "-", RowBox[List["n", " ", RowBox[List["(", RowBox[List["n", "+", "1"]], ")"]]]]]]], "+", FractionBox[RowBox[List[SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["n", "-", "m"]], ")"]], " ", RowBox[List["(", RowBox[List["n", "-", "m", "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["n", "+", "m", "+", "2"]], ")"]], " ", RowBox[List["(", RowBox[List["n", "+", "m", "+", "1"]], ")"]]]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "\[CurlyPhi]"]]], " ", RowBox[List["SphericalHarmonicY", "[", RowBox[List["n", ",", RowBox[List["m", "+", "2"]], ",", "\[CurlyTheta]", ",", "\[CurlyPhi]"]], "]"]]]], RowBox[List[RowBox[List["m", " ", RowBox[List["(", RowBox[List["m", "+", "1"]], ")"]]]], "-", RowBox[List["n", " ", RowBox[List["(", RowBox[List["n", "+", "1"]], ")"]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29