| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/05.10.17.0005.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | SphericalHarmonicY[n, m, \[CurlyTheta], \[CurlyPhi]] == 
 Sec[\[CurlyTheta]] (Sqrt[((n - m) (n + m))/((2 n - 1) (2 n + 1))] 
    SphericalHarmonicY[n - 1, m, \[CurlyTheta], \[CurlyPhi]] + 
   Sqrt[((n - m + 1) (n + m + 1))/((2 n + 1) (2 n + 3))] 
    SphericalHarmonicY[n + 1, m, \[CurlyTheta], \[CurlyPhi]]) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["SphericalHarmonicY", "[", RowBox[List["n", ",", "m", ",", "\[CurlyTheta]", ",", "\[CurlyPhi]"]], "]"]], "\[Equal]", " ", RowBox[List[RowBox[List["Sec", "[", "\[CurlyTheta]", "]"]], " ", RowBox[List["(", " ", RowBox[List[RowBox[List[SqrtBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["n", "-", "m"]], ")"]], RowBox[List["(", RowBox[List["n", "+", "m"]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "n"]], "-", "1"]], ")"]], RowBox[List["(", RowBox[List[RowBox[List["2", "n"]], "+", "1"]], ")"]]]]]], RowBox[List["SphericalHarmonicY", "[", RowBox[List[RowBox[List["n", "-", "1"]], ",", "m", ",", "\[CurlyTheta]", ",", "\[CurlyPhi]"]], "]"]]]], "+", RowBox[List[SqrtBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["n", "-", "m", "+", "1"]], ")"]], RowBox[List["(", RowBox[List["n", "+", "m", "+", "1"]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "n"]], "+", "1"]], ")"]], RowBox[List["(", RowBox[List[RowBox[List["2", "n"]], "+", "3"]], ")"]]]]]], " ", RowBox[List["SphericalHarmonicY", "[", RowBox[List[RowBox[List["n", "+", "1"]], ",", "m", ",", "\[CurlyTheta]", ",", "\[CurlyPhi]"]], "]"]]]]]], ")"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <msubsup>  <mi> Y </mi>  <mi> n </mi>  <mi> m </mi>  </msubsup>  <mo> ( </mo>  <mrow>  <mi> ϑ </mi>  <mo> , </mo>  <mi> φ </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mrow>  <mi> sec </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> ϑ </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> m </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </msqrt>  </mrow>  <mrow>  <msqrt>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mi> m </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </msqrt>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <msubsup>  <mi> Y </mi>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mi> m </mi>  </msubsup>  <mo> ( </mo>  <mrow>  <mi> ϑ </mi>  <mo> , </mo>  <mi> φ </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> m </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> m </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mi> m </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </msqrt>  </mrow>  <mrow>  <msqrt>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  <mo> + </mo>  <mn> 3 </mn>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mi> m </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> m </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </msqrt>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <msubsup>  <mi> Y </mi>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mi> m </mi>  </msubsup>  <mo> ( </mo>  <mrow>  <mi> ϑ </mi>  <mo> , </mo>  <mi> φ </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <ci> SphericalHarmonicY </ci>  <ci> n </ci>  <ci> m </ci>  <ci> ϑ </ci>  <ci> φ </ci>  </apply>  <apply>  <times />  <apply>  <sec />  <ci> ϑ </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <apply>  <plus />  <ci> n </ci>  <ci> m </ci>  </apply>  <apply>  <power />  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <ci> n </ci>  <ci> m </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> n </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> n </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <ci> n </ci>  <ci> m </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> SphericalHarmonicY </ci>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> -1 </cn>  </apply>  <ci> m </ci>  <ci> ϑ </ci>  <ci> φ </ci>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <power />  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <ci> n </ci>  <ci> m </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> n </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> n </ci>  </apply>  <cn type='integer'> 3 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <ci> n </ci>  <ci> m </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> SphericalHarmonicY </ci>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> 1 </cn>  </apply>  <ci> m </ci>  <ci> ϑ </ci>  <ci> φ </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["SphericalHarmonicY", "[", RowBox[List["n_", ",", "m_", ",", "\[CurlyTheta]_", ",", "\[CurlyPhi]_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["Sec", "[", "\[CurlyTheta]", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["n", "-", "m"]], ")"]], " ", RowBox[List["(", RowBox[List["n", "+", "m"]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "n"]], "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]], ")"]]]]]], " ", RowBox[List["SphericalHarmonicY", "[", RowBox[List[RowBox[List["n", "-", "1"]], ",", "m", ",", "\[CurlyTheta]", ",", "\[CurlyPhi]"]], "]"]]]], "+", RowBox[List[SqrtBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["n", "-", "m", "+", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["n", "+", "m", "+", "1"]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "n"]], "+", "3"]], ")"]]]]]], " ", RowBox[List["SphericalHarmonicY", "[", RowBox[List[RowBox[List["n", "+", "1"]], ",", "m", ",", "\[CurlyTheta]", ",", "\[CurlyPhi]"]], "]"]]]]]], ")"]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |